
Abstract Interpretation of
Recursive Logic Definitions for
Efficient Runtime Assertion Checking
Thibaut Benjamin, Julien Signoles TAP 2023

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
University of Cambridge



RAC of Arithmetic Properties in E-
ACSL

RAC of Arithmetic Properties in E-ACSL

2/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software (Baudin, Bobot, et al.
2021)
Collaborative platform for C code verification combining different
analysis methods.

• Specification language: ACSL (Baudin, Filliâtre, et al. n.d.)

• E-ACSL is a runtime assertion checker
Give it a program with assertions, and it gives you a monitored
program

3/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software (Baudin, Bobot, et al.
2021)
Collaborative platform for C code verification combining different
analysis methods.

• Specification language: ACSL (Baudin, Filliâtre, et al. n.d.)

• E-ACSL is a runtime assertion checker
Give it a program with assertions, and it gives you a monitored
program

3/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software (Baudin, Bobot, et al.
2021)
Collaborative platform for C code verification combining different
analysis methods.

• Specification language: ACSL (Baudin, Filliâtre, et al. n.d.)

• E-ACSL is a runtime assertion checker
Give it a program with assertions, and it gives you a monitored
program

3/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Basic Principle of Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

Assertions
Checking

4/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Basic Principle of Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

Assertions
Checking

4/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Basic Principle of Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

Assertions
Checking

4/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Basic Principle of Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

Assertions
Checking

4/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Basic Principle of Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

Assertions
Checking

4/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Basic Principle of Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

Assertions
Checking

4/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Minimal Example

1 int main (){
2 int x = 5;
3 //@ assert x + 1 == 6;
4 return 0;
5 }

→

1 int main (){
2 int x = 5;
3 assert (x + 1 == 6);
4 return 0;
5 }

5/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Minimal Example

1 int main (){
2 int x = 5;
3 //@ assert x + 1 == 6;
4 return 0;
5 }

→

1 int main (){
2 int x = 5;
3 assert (x + 1 == 6);
4 return 0;
5 }

5/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Desired Properties

• Transparency : When all the assertions are satisfied, the
presence of the monitor should not alter the functional
behaviour of the program.

• Soundness : When an assertion is violated, the program
should accurately report it.

• Correctness : Transparency + Soundness
• Efficiency : The presence of the monitor should induce a

reasonable overhead in time and resources.
• Expressiveness : The more properties the monitor can handle

the better

6/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Desired Properties

• Transparency : When all the assertions are satisfied, the
presence of the monitor should not alter the functional
behaviour of the program.

• Soundness : When an assertion is violated, the program
should accurately report it.

• Correctness : Transparency + Soundness
• Efficiency : The presence of the monitor should induce a

reasonable overhead in time and resources.
• Expressiveness : The more properties the monitor can handle

the better

6/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Desired Properties

• Transparency : When all the assertions are satisfied, the
presence of the monitor should not alter the functional
behaviour of the program.

• Soundness : When an assertion is violated, the program
should accurately report it.

• Correctness : Transparency + Soundness

• Efficiency : The presence of the monitor should induce a
reasonable overhead in time and resources.

• Expressiveness : The more properties the monitor can handle
the better

6/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Desired Properties

• Transparency : When all the assertions are satisfied, the
presence of the monitor should not alter the functional
behaviour of the program.

• Soundness : When an assertion is violated, the program
should accurately report it.

• Correctness : Transparency + Soundness
• Efficiency : The presence of the monitor should induce a

reasonable overhead in time and resources.

• Expressiveness : The more properties the monitor can handle
the better

6/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Desired Properties

• Transparency : When all the assertions are satisfied, the
presence of the monitor should not alter the functional
behaviour of the program.

• Soundness : When an assertion is violated, the program
should accurately report it.

• Correctness : Transparency + Soundness
• Efficiency : The presence of the monitor should induce a

reasonable overhead in time and resources.
• Expressiveness : The more properties the monitor can handle

the better

6/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions

• User-defined (Mutually Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

• Specifically, we consider the following constructs:

• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2
• User-defined Functions and Predicates

logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions
• User-defined (Mutually Recursive) Functions and Predicates

• Quantifications on Finite Domains
• Pointer Status and Memory Properties

• Specifically, we consider the following constructs:

• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2
• User-defined Functions and Predicates

logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions
• User-defined (Mutually Recursive) Functions and Predicates
• Quantifications on Finite Domains

• Pointer Status and Memory Properties

• Specifically, we consider the following constructs:

• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2
• User-defined Functions and Predicates

logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions
• User-defined (Mutually Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

• Specifically, we consider the following constructs:

• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2
• User-defined Functions and Predicates

logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions
• User-defined (Mutually Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

Today

• Specifically, we consider the following constructs:

• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2
• User-defined Functions and Predicates

logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions
• User-defined (Mutually Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

Today

• Specifically, we consider the following constructs:

• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2
• User-defined Functions and Predicates

logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions
• User-defined (Mutually Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

Today

• Specifically, we consider the following constructs:
• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2
• User-defined Functions and Predicates

logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions
• User-defined (Mutually Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

Today

• Specifically, we consider the following constructs:
• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2

• User-defined Functions and Predicates
logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Today’s scope

• E-ACSL supports in particular (Signoles 2022):
• Arithmetic Assertions
• User-defined (Mutually Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

Today

• Specifically, we consider the following constructs:
• Comparison and arithmetic operators
==, !=, <, <=, >, >=, +, *, -, /

• Conditionals p ? t1 : t2
• User-defined Functions and Predicates

logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

7/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Related Works

• Formalisation of RAC : for JML (Cheon 2003)
No mathematical integer at the time
No user-defined logic functions

• Formlisation effort on E-ACSL
In, particular: memory properties (Ly et al. 2020)

8/29TAP 2023 – Thibaut Benjamin, Julien Signoles



RAC of Arithmetic Properties in E-
ACSL

Related Works

• Formalisation of RAC : for JML (Cheon 2003)
No mathematical integer at the time
No user-defined logic functions

• Formlisation effort on E-ACSL
In, particular: memory properties (Ly et al. 2020)

8/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Correctness vs. Efficiency

9/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach:
1 // x is an int
2 //@ assert (x+1 == 0); → 1 // x is an int

2 assert (x+1 == 0);

+ in the ACSL language↰mathematical integers
+ in the C language↰machine integers

What if x= 231 − 1?

231 ?
= 0

false
Arithmetic Overflow
Undefined Behavior

10/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach:
1 // x is an int
2 //@ assert (x+1 == 0); → 1 // x is an int

2 assert (x+1 == 0);

+ in the ACSL language↰mathematical integers

+ in the C language↰machine integers

What if x= 231 − 1?

231 ?
= 0

false
Arithmetic Overflow
Undefined Behavior

10/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach:
1 // x is an int
2 //@ assert (x+1 == 0); → 1 // x is an int

2 assert (x+1 == 0);

+ in the ACSL language↰mathematical integers
+ in the C language↰machine integers

What if x= 231 − 1?

231 ?
= 0

false
Arithmetic Overflow
Undefined Behavior

10/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach:
1 // x is an int
2 //@ assert (x+1 == 0); → 1 // x is an int

2 assert (x+1 == 0);

+ in the ACSL language↰mathematical integers
+ in the C language↰machine integers

What if x= 231 − 1?

231 ?
= 0

false
Arithmetic Overflow
Undefined Behavior

10/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach:
1 // x is an int
2 //@ assert (x+1 == 0); → 1 // x is an int

2 assert (x+1 == 0);

+ in the ACSL language↰mathematical integers
+ in the C language↰machine integers

What if x= 231 − 1?

231 ?
= 0

false

Arithmetic Overflow
Undefined Behavior

10/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach:
1 // x is an int
2 //@ assert (x+1 == 0); → 1 // x is an int

2 assert (x+1 == 0);

+ in the ACSL language↰mathematical integers
+ in the C language↰machine integers

What if x= 231 − 1?

231 ?
= 0

false
Arithmetic Overflow
Undefined Behavior

10/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Solution: Arbitrary Precision Arithmetic

A correct translation generated using the GMP library:

1 // x is an int
2 //@ assert (x+1 == 0);

1 // x is an int
2 mpz_t y, z, o, r;
3 mpz_init_set_si(y, x);
4 mpz_init_set_si(o, 1);
5 mpz_init(r);
6 mpz_add(r, y, o);
7 mpz_init_set_si(z, 0);
8 int c = mpz_cmp(r, 0);
9 assert (c == 0);

10 mpz_clear(y);
11 mpz_clear(z);
12 mpz_clear(o);
13 mpz_clear(r);

11/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

The Dilemma

machine integers GMP integers
correct ✓

efficient ✓
generates simple code ✓

Can we get the best of both worlds?

12/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

The Dilemma

machine integers GMP integers
correct ✓

efficient ✓
generates simple code ✓

Can we get the best of both worlds?

12/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Central Idea

Run a static analysis on the annotation, to infer the runtime size of
each term

• If the term is small enough → machine integers
• Otherwise → GMP integers

Translating annotations this way in the presence of user-defined
functions is challenging.
Out of scope for today (Benjamin and Signoles 2023)

13/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Central Idea

Run a static analysis on the annotation, to infer the runtime size of
each term

• If the term is small enough → machine integers

• Otherwise → GMP integers

Translating annotations this way in the presence of user-defined
functions is challenging.
Out of scope for today (Benjamin and Signoles 2023)

13/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Central Idea

Run a static analysis on the annotation, to infer the runtime size of
each term

• If the term is small enough → machine integers
• Otherwise → GMP integers

Translating annotations this way in the presence of user-defined
functions is challenging.
Out of scope for today (Benjamin and Signoles 2023)

13/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Central Idea

Run a static analysis on the annotation, to infer the runtime size of
each term

• If the term is small enough → machine integers
• Otherwise → GMP integers

Translating annotations this way in the presence of user-defined
functions is challenging.
Out of scope for today (Benjamin and Signoles 2023)

13/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Interval Arithmetic

Build the static analysis with the following constraints
• Over-approximate the possible values, no need for precision

• Give an answer quickly in every situation

Fast Precise
▲

↰Interval arithmetic, with rules like

⊢ t : [a,b] ⊢ u : [c,d]
⊢ t + u : [a + c;b + d]

14/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Interval Arithmetic

Build the static analysis with the following constraints
• Over-approximate the possible values, no need for precision
• Give an answer quickly in every situation

Fast Precise
▲

↰Interval arithmetic, with rules like

⊢ t : [a,b] ⊢ u : [c,d]
⊢ t + u : [a + c;b + d]

14/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Interval Arithmetic

Build the static analysis with the following constraints
• Over-approximate the possible values, no need for precision
• Give an answer quickly in every situation

Fast Precise
▲

↰Interval arithmetic, with rules like

⊢ t : [a,b] ⊢ u : [c,d]
⊢ t + u : [a + c;b + d]

14/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Correctness vs. Efficiency

Interval Arithmetic

Build the static analysis with the following constraints
• Over-approximate the possible values, no need for precision
• Give an answer quickly in every situation

Fast Precise
▲

↰Interval arithmetic, with rules like

⊢ t : [a,b] ⊢ u : [c,d]
⊢ t + u : [a + c;b + d]

14/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Abstract Interpretation for User-Defined
Logic Functions

15/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Dealing with Function

• This section deals with the user-defined functions and
predicates.

• Use standard techniques from abstract interpretation (Cousot
2022)

• Adapt them in the context of efficient RAC

• We only present the case of functions.
Predicates are the particular case of Boolean-valued functions.

16/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Dealing with Function

• This section deals with the user-defined functions and
predicates.

• Use standard techniques from abstract interpretation (Cousot
2022)

• Adapt them in the context of efficient RAC

• We only present the case of functions.
Predicates are the particular case of Boolean-valued functions.

16/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Dealing with Function

• This section deals with the user-defined functions and
predicates.

• Use standard techniques from abstract interpretation (Cousot
2022)

• Adapt them in the context of efficient RAC

• We only present the case of functions.
Predicates are the particular case of Boolean-valued functions.

16/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Dealing with Function

• This section deals with the user-defined functions and
predicates.

• Use standard techniques from abstract interpretation (Cousot
2022)

• Adapt them in the context of efficient RAC

• We only present the case of functions.
Predicates are the particular case of Boolean-valued functions.

16/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Translation by Specialisation

• Specialise each logic function into its own C function

• The same logic function may be specialised several times

• Example:

1 //@ logic integer f (integer x) = x * 1024
2 ...
3 //@ assert f(2097152) > f(256)

Specialise using GMP on the RHS, and int on the LHS

17/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Translation by Specialisation

• Specialise each logic function into its own C function

• The same logic function may be specialised several times

• Example:

1 //@ logic integer f (integer x) = x * 1024
2 ...
3 //@ assert f(2097152) > f(256)

Specialise using GMP on the RHS, and int on the LHS

17/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Translation by Specialisation

• Specialise each logic function into its own C function

• The same logic function may be specialised several times

• Example:

1 //@ logic integer f (integer x) = x * 1024
2 ...
3 //@ assert f(2097152) > f(256)

Specialise using GMP on the RHS, and int on the LHS

17/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Inference in Context

• Context = mapping: formal parameter → interval

• Infer the interval of every term in context
Γ ⊢ t : [a,b]

• Infer the interval of the body of a function assuming an interval
for every argument :

1 /*@ logic integer f
(integer x) = t */

2 ...
3 //@ assert f(u) = 5

⊢ u : J {x : J} ⊢ t : I
⊢ f(u) : I

18/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Inference in Context

• Context = mapping: formal parameter → interval

• Infer the interval of every term in context
Γ ⊢ t : [a,b]

• Infer the interval of the body of a function assuming an interval
for every argument :

1 /*@ logic integer f
(integer x) = t */

2 ...
3 //@ assert f(u) = 5

⊢ u : J {x : J} ⊢ t : I
⊢ f(u) : I

18/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Inference in Context

• Context = mapping: formal parameter → interval

• Infer the interval of every term in context
Γ ⊢ t : [a,b]

• Infer the interval of the body of a function assuming an interval
for every argument :

1 /*@ logic integer f
(integer x) = t */

2 ...
3 //@ assert f(u) = 5

⊢ u : J {x : J} ⊢ t : I
⊢ f(u) : I

18/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Inference in Context

• Context = mapping: formal parameter → interval

• Infer the interval of every term in context
Γ ⊢ t : [a,b]

• Infer the interval of the body of a function assuming an interval
for every argument :

1 /*@ logic integer f
(integer x) = t */

2 ...
3 //@ assert f(u) = 5

⊢ u : J {x : J} ⊢ t : I
⊢ f(u) : I

18/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Recursive Functions

• ACSL allows for recursive functions

• Just apply the previous rule until you stop?

⊢ u : J {x : J} ⊢ t : I
⊢ f(u) : I

• This might not terminate, or converge slowly!
It may not terminate on well-defined functions. Additionally, ACSL
does not restrict syntactically the recursion schemes

• Way too many specialisations
Essentially unrolls all recursive calls

19/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Recursive Functions

• ACSL allows for recursive functions

• Just apply the previous rule until you stop?

⊢ u : J {x : J} ⊢ t : I
⊢ f(u) : I

• This might not terminate, or converge slowly!
It may not terminate on well-defined functions. Additionally, ACSL
does not restrict syntactically the recursion schemes

• Way too many specialisations
Essentially unrolls all recursive calls

19/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Recursive Functions

• ACSL allows for recursive functions

• Just apply the previous rule until you stop?

⊢ u : J {x : J} ⊢ t : I
⊢ f(u) : I

• This might not terminate, or converge slowly!
It may not terminate on well-defined functions. Additionally, ACSL
does not restrict syntactically the recursion schemes

• Way too many specialisations
Essentially unrolls all recursive calls

19/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Recursive Functions

• ACSL allows for recursive functions

• Just apply the previous rule until you stop?

⊢ u : J {x : J} ⊢ t : I
⊢ f(u) : I

• This might not terminate, or converge slowly!
It may not terminate on well-defined functions. Additionally, ACSL
does not restrict syntactically the recursion schemes

• Way too many specialisations
Essentially unrolls all recursive calls

19/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Computing Fixpoints (I)
• 2 fixpoint computations

• For the function’s arguments

• For the function’s output (⊢f )
• Those computations are simultaneous and intricate

• Function application = inductive case for argument fixpoint:

Γ|{f : J → I′} ⊢ u : J′ {f : J ∪ J′ → I′} ⊢f f : I
Γ|{f : J → I′} ⊢ f(u) : I

• Base case for argument fixpoint

Γ|{f : J → I} ⊢ u : J′ J′ ⊆ J
Γ|{f : J → I} ⊢ f(u) : I

20/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Computing Fixpoints (I)
• 2 fixpoint computations

• For the function’s arguments
• For the function’s output (⊢f )

• Those computations are simultaneous and intricate

• Function application = inductive case for argument fixpoint:

Γ|{f : J → I′} ⊢ u : J′ {f : J ∪ J′ → I′} ⊢f f : I
Γ|{f : J → I′} ⊢ f(u) : I

• Base case for argument fixpoint

Γ|{f : J → I} ⊢ u : J′ J′ ⊆ J
Γ|{f : J → I} ⊢ f(u) : I

20/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Computing Fixpoints (I)
• 2 fixpoint computations

• For the function’s arguments
• For the function’s output (⊢f )
• Those computations are simultaneous and intricate

• Function application = inductive case for argument fixpoint:

Γ|{f : J → I′} ⊢ u : J′ {f : J ∪ J′ → I′} ⊢f f : I
Γ|{f : J → I′} ⊢ f(u) : I

• Base case for argument fixpoint

Γ|{f : J → I} ⊢ u : J′ J′ ⊆ J
Γ|{f : J → I} ⊢ f(u) : I

20/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Computing Fixpoints (I)
• 2 fixpoint computations

• For the function’s arguments
• For the function’s output (⊢f )
• Those computations are simultaneous and intricate

• Function application = inductive case for argument fixpoint:

Γ|{f : J → I′} ⊢ u : J′ {f : J ∪ J′ → I′} ⊢f f : I
Γ|{f : J → I′} ⊢ f(u) : I

• Base case for argument fixpoint

Γ|{f : J → I} ⊢ u : J′ J′ ⊆ J
Γ|{f : J → I} ⊢ f(u) : I

20/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Computing Fixpoints (I)
• 2 fixpoint computations

• For the function’s arguments
• For the function’s output (⊢f )
• Those computations are simultaneous and intricate

• Function application = inductive case for argument fixpoint:

Γ|{f : J → I′} ⊢ u : J′ {f : J ∪ J′ → I′} ⊢f f : I
Γ|{f : J → I′} ⊢ f(u) : I

• Base case for argument fixpoint

Γ|{f : J → I} ⊢ u : J′ J′ ⊆ J
Γ|{f : J → I} ⊢ f(u) : I

20/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Computing Fixpoints (II)

Computing the interval output of a recursive function:
• Base case :

{x : J}|{f : J → I} ⊢ t : I′ I′ ⊆ I
{f : J → I} ⊢f f : I

• Inductive case :

{x : J}|{f : J → I′} ⊢ t : I′′ {f : J → I′ ∪ I′′} ⊢f f : I
{f : J → I′} ⊢f f : I

21/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Computing Fixpoints (II)

Computing the interval output of a recursive function:
• Base case :

{x : J}|{f : J → I} ⊢ t : I′ I′ ⊆ I
{f : J → I} ⊢f f : I

• Inductive case :

{x : J}|{f : J → I′} ⊢ t : I′′ {f : J → I′ ∪ I′′} ⊢f f : I
{f : J → I′} ⊢f f : I

21/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Widening to Speed Up Convergence
• The fixpoint converge slowly, still may not terminate

• But they are very (too?) precise
Sacrifice some precision for the sake of efficiency

• Use widening: classic technique in abstract interpretation.
Operator ∇, s.t. I∇I′ contains I ∪ I′ (+ additional conditions)

• Replace ∪ by ∇ in the previous rules

• In practice: I∇I′ extends I to the next machine integer
boundary in the “direction of the growth”
E.g. [0,5]∇[1,6] = [0,231 − 1]

22/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Widening to Speed Up Convergence
• The fixpoint converge slowly, still may not terminate

• But they are very (too?) precise
Sacrifice some precision for the sake of efficiency

• Use widening: classic technique in abstract interpretation.
Operator ∇, s.t. I∇I′ contains I ∪ I′ (+ additional conditions)

• Replace ∪ by ∇ in the previous rules

• In practice: I∇I′ extends I to the next machine integer
boundary in the “direction of the growth”
E.g. [0,5]∇[1,6] = [0,231 − 1]

22/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Widening to Speed Up Convergence
• The fixpoint converge slowly, still may not terminate

• But they are very (too?) precise
Sacrifice some precision for the sake of efficiency

• Use widening: classic technique in abstract interpretation.
Operator ∇, s.t. I∇I′ contains I ∪ I′ (+ additional conditions)

• Replace ∪ by ∇ in the previous rules

• In practice: I∇I′ extends I to the next machine integer
boundary in the “direction of the growth”
E.g. [0,5]∇[1,6] = [0,231 − 1]

22/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Widening to Speed Up Convergence
• The fixpoint converge slowly, still may not terminate

• But they are very (too?) precise
Sacrifice some precision for the sake of efficiency

• Use widening: classic technique in abstract interpretation.
Operator ∇, s.t. I∇I′ contains I ∪ I′ (+ additional conditions)

• Replace ∪ by ∇ in the previous rules

• In practice: I∇I′ extends I to the next machine integer
boundary in the “direction of the growth”
E.g. [0,5]∇[1,6] = [0,231 − 1]

22/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Widening to Speed Up Convergence
• The fixpoint converge slowly, still may not terminate

• But they are very (too?) precise
Sacrifice some precision for the sake of efficiency

• Use widening: classic technique in abstract interpretation.
Operator ∇, s.t. I∇I′ contains I ∪ I′ (+ additional conditions)

• Replace ∪ by ∇ in the previous rules

• In practice: I∇I′ extends I to the next machine integer
boundary in the “direction of the growth”
E.g. [0,5]∇[1,6] = [0,231 − 1]

22/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Benchmarks

• This system is implemented and E-ACSL; we use it for
benchmarks.

• Benchmarks were run on minimal examples, since execution
quickly fails without using this analysis.

Figure: Evaluation of Monitor Efficiency.

23/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Benchmarks

• This system is implemented and E-ACSL; we use it for
benchmarks.

• Benchmarks were run on minimal examples, since execution
quickly fails without using this analysis.

Figure: Evaluation of Monitor Efficiency.
23/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Formal Guarantees

abstract semantics = interval inferred for a logic term in our system
concrete semantics = actual semantics of the ACSL language.

Theorem
Every term has an abstract semantics, and if the term has a
concrete semantics, it is necessarily an element of the abstract
semantics.

24/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Conclusion

• Static analysis based on abstract interpretation in the interval
domains for efficient RAC.

• 2 simultaneous fixpoint algorithms given by 4 inference rules.
Proving formal correctness

• Using widening to speed up convergence
Terminates quickly even on ill-formed functions.

• Implemented and benchmarked in Frama-C/E-ACSL

25/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Conclusion

• Static analysis based on abstract interpretation in the interval
domains for efficient RAC.

• 2 simultaneous fixpoint algorithms given by 4 inference rules.
Proving formal correctness

• Using widening to speed up convergence
Terminates quickly even on ill-formed functions.

• Implemented and benchmarked in Frama-C/E-ACSL

25/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Conclusion

• Static analysis based on abstract interpretation in the interval
domains for efficient RAC.

• 2 simultaneous fixpoint algorithms given by 4 inference rules.
Proving formal correctness

• Using widening to speed up convergence
Terminates quickly even on ill-formed functions.

• Implemented and benchmarked in Frama-C/E-ACSL

25/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Conclusion

• Static analysis based on abstract interpretation in the interval
domains for efficient RAC.

• 2 simultaneous fixpoint algorithms given by 4 inference rules.
Proving formal correctness

• Using widening to speed up convergence
Terminates quickly even on ill-formed functions.

• Implemented and benchmarked in Frama-C/E-ACSL

25/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Perspectives

• Possibility to improve widening
Possibly account for off-by-one? function-specific widening?

• Switch GMP/machine integers at runtime? (cf. ZArith in
OCaml)
if a function has to compute in GMP once after many iterations in
machine integers.

• Include this work with other aspects of E-ACSL
Dealing with rational numbers, undefinedness, memory property

• Apply this idea to other systems dealing with integers
E.g. Simulation software

26/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Perspectives

• Possibility to improve widening
Possibly account for off-by-one? function-specific widening?

• Switch GMP/machine integers at runtime? (cf. ZArith in
OCaml)
if a function has to compute in GMP once after many iterations in
machine integers.

• Include this work with other aspects of E-ACSL
Dealing with rational numbers, undefinedness, memory property

• Apply this idea to other systems dealing with integers
E.g. Simulation software

26/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Perspectives

• Possibility to improve widening
Possibly account for off-by-one? function-specific widening?

• Switch GMP/machine integers at runtime? (cf. ZArith in
OCaml)
if a function has to compute in GMP once after many iterations in
machine integers.

• Include this work with other aspects of E-ACSL
Dealing with rational numbers, undefinedness, memory property

• Apply this idea to other systems dealing with integers
E.g. Simulation software

26/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Abstract Interpretation for User-
Defined Logic Functions

Perspectives

• Possibility to improve widening
Possibly account for off-by-one? function-specific widening?

• Switch GMP/machine integers at runtime? (cf. ZArith in
OCaml)
if a function has to compute in GMP once after many iterations in
machine integers.

• Include this work with other aspects of E-ACSL
Dealing with rational numbers, undefinedness, memory property

• Apply this idea to other systems dealing with integers
E.g. Simulation software

26/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Thank you

Thank you

27/29TAP 2023 – Thibaut Benjamin, Julien Signoles



Thank you

References I

Baudin, P., F. Bobot, et al. (2021). “The Dogged Pursuit of
Bug-Free C Programs: The Frama-C Software Analysis
Platform”. In: Communications of the ACM.
Baudin, P., J-C. Filliâtre, et al. (n.d.). ACSL: ANSI/ISO C
Specification Language. Tech. rep. CEA List and Inria. url:
https://frama-c.com/download/acsl.pdf.
Signoles, J. (2022). E-ACSL Version 1.18. Implementation in
Frama-C Plug-in E-ACSL 26.1. http://frama-
c.com/download/e-acsl/e-acsl-implementation.pdf.
Cheon, Y. (2003). “A runtime assertion checker for the Java
Modeling Language”. PhD thesis. Iowa State University.
Ly, D. et al. (2020). “Verified Runtime Assertion Checking for
Memory Properties”. In: International Conference on Tests and
Proofs (TAP).

28/29TAP 2023 – Thibaut Benjamin, Julien Signoles

https://frama-c.com/download/acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl-implementation.pdf
http://frama-c.com/download/e-acsl/e-acsl-implementation.pdf


Thank you

References II

Benjamin, T. and J. Signoles (2023). “Formalizing an Efficient
Runtime Assertion Checker for an Arithmetic Language with
Functions and Predicates”. In: Symposium on Applied
Computing.
Cousot, Patrick (2022). Principles of Abstract Interpretation. MIT
Press.

29/29TAP 2023 – Thibaut Benjamin, Julien Signoles


	RAC of Arithmetic Properties in E-ACSL
	Correctness vs. Efficiency
	Abstract Interpretation for User-Defined Logic Functions
	Thank you
	References

