

Formalizing an Efficient Runtime Assertion Checker for an Arithmetic Language with Functions and Predicates

Thibaut Benjamin, Julien Signoles

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

**SAC-SVT 2023** 



mp\_(jj) = rt) << NMT = Trease if then flig) >= t1 << CNBT = Tip (jj) = rt ( << CNBT = Tip (jj) = rt) = (MT) = (MT)



#### RAC of Arithmetic in E-ACSL



C with Logical Annotations



















#### Minimal Example

```
1 int main (){
2 int x = 5;
3 //@ assert x + 1 == 6;
4 return 0;
5 }
```



#### Minimal Example

```
1 int main () {

2 int x = 5;

3 //@ assert x + 1 == 6; \rightarrow 3 assert (x + 1 == 6);

4 return 0;

5 }

1 int main () {

2 int x = 5;

3 assert (x + 1 == 6);

4 return 0;

5 }
```



#### • Plugin part of the Frama-C software [1] Collaborative platform for C code verification combining different analysis methods.



- Plugin part of the Frama-C software [1] Collaborative platform for C code verification combining different analysis methods.
- Specification language : ACSL [2]



- Plugin part of the Frama-C software [1] Collaborative platform for C code verification combining different analysis methods.
- Specification language : ACSL [2]
- E-ACSL supports in particular [3] :
  - Arithmetic Assertions



- Plugin part of the Frama-C software [1] Collaborative platform for C code verification combining different analysis methods.
- Specification language : ACSL [2]
- E-ACSL supports in particular [3] :
  - Arithmetic Assertions
  - User-defined (Recursive) Functions and Predicates



- Plugin part of the Frama-C software [1] Collaborative platform for C code verification combining different analysis methods.
- Specification language : ACSL [2]
- E-ACSL supports in particular [3] :
  - Arithmetic Assertions
  - User-defined (Recursive) Functions and Predicates
  - Quantifications on Finite Domains



- Plugin part of the Frama-C software [1] Collaborative platform for C code verification combining different analysis methods.
- Specification language : ACSL [2]
- E-ACSL supports in particular [3] :
  - Arithmetic Assertions
  - User-defined (Recursive) Functions and Predicates
  - Quantifications on Finite Domains
  - Pointer Status and Memory Properties



- Plugin part of the Frama-C software [1] Collaborative platform for C code verification combining different analysis methods.
- Specification language : ACSL [2]
- E-ACSL supports in particular [3] :
  - Arithmetic Assertions
  - User-defined (Recursive) Functions and Predicates

Today

- Quantifications on Finite Domains
- Pointer Status and Memory Properties



#### In this presentation

We are interested in the translation of a language containing the following constructs

• Comparison and arithmetic operators

==, !=, <, <=, >, >= +, \*, -, /



#### In this presentation

We are interested in the translation of a language containing the following constructs

• Comparison and arithmetic operators

==, !=, <, <=, >, >= +, \*, -, /

Conditionals
 p ? t<sub>1</sub> : t<sub>2</sub>



#### In this presentation

We are interested in the translation of a language containing the following constructs

• Comparison and arithmetic operators

==, !=, <, <=, >, >= +, \*, -, /

Conditionals
 p ? t<sub>1</sub> : t<sub>2</sub>

• User-defined Functions and Predicates

logic integer f (integer x) = t  $\dots$  f(y) predicate p (integer x) = b  $\dots$  p(y)



#### Correctness vs. Efficiency



Naive Approach :

1 // x is an int 1 // x is an int $2 //@ \text{ assert} (x+1 == 0); \rightarrow 2 \text{ assert} (x+1 == 0);$ 



Naive Approach :

1 // x is an int 1 // x is an int $2 //@ \text{ assert } (x+1 == 0); \rightarrow 2 \text{ assert } (x+1 == 0);$ 

+ : mathematical integers



Naive Approach :

1 // x is an int 1 // x is an int $2 //@ \text{ assert } (x+1 == 0); \rightarrow 2 \text{ assert } (x+1 == 0);$ 

+ : mathematical integers

+ : machine integers



Naive Approach :

+ : mathematical integers

+ : machine integers

What if  $x = 2^{31} - 1$ ?



Naive Approach :

- - + : mathematical integers

+ : machine integers

What if  $x = 2^{31} - 1$ ?  $2^{31} == 0$ false



Naive Approach :

- - + : mathematical integers

+ : machine integers

What if  $x = 2^{31} - 1$ ?  $2^{31} == 0$ false

Arithmetic Overflow Undefined Behavior



#### Solution : Arbitrary Precision Arithmetic

A correct translation generated using the GMP library :

```
4 mpz

5 mpz

1 // x is an int

2 //@ assert (x+1 == 0);

a int
```



| machine integers | incorrect | efficient   | simple  |
|------------------|-----------|-------------|---------|
| GMP integers     | correct   | inefficient | complex |



| machine integers | incorrect | efficient   | simple  |
|------------------|-----------|-------------|---------|
| GMP integers     | correct   | inefficient | complex |

Getting the best of both worlds via a static analysis [4]



| machine integers | incorrect | efficient   | simple  |
|------------------|-----------|-------------|---------|
| GMP integers     | correct   | inefficient | complex |

Getting the best of both worlds via a static analysis [4]

Today : the analysis is a blackbox  $\mathcal I$  : term  $\rightarrow$  interval



| machine integers | incorrect | efficient   | simple  |
|------------------|-----------|-------------|---------|
| GMP integers     | correct   | inefficient | complex |

Getting the best of both worlds via a static analysis [4]

Today : the analysis is a blackbox  $\mathcal I$  : term  $\rightarrow$  interval

•  $\mathcal{I}(t)$  is contained in the integers representable by machine Can safely use machine integers



| machine integers | incorrect | efficient   | simple  |
|------------------|-----------|-------------|---------|
| GMP integers     | correct   | inefficient | complex |

#### Getting the best of both worlds via a static analysis [4]

Today : the analysis is a blackbox  $\mathcal I$  : term  $\rightarrow$  interval

•  $\mathcal{I}(t)$  is contained in the integers representable by machine Can safely use machine integers

#### Otherwise

Use GMP integers in case there is an overflow



#### The Problem With Functions



### Translating Functions

- Generate a C function that translate the ACSL function
- 1 logic integer p (integer x) = x + 100000000;  $\downarrow$
- 1 int p (int x) {x + 100000000;}



# Translating Functions

- Generate a C function that translate the ACSL function
- 1 logic integer p (integer x) = x + 100000000;  $\downarrow$
- 1 int p (int x) {x + 100000000;}

#### • Same issue with arithmetic overflows

```
1 /*@ assert p(1) == 1000000001; */ //OK
2 /*@ assert p(500000000) > 0; */ //Not OK
3 /*@ assert p(200000000) > 0; */ //Not OK
```

Crama Solutions The Problem With Functions

#### One Function Per Call-Site

• Generate a different C function for each call-site

1 /\*@ assert p(1) == 100000001; \*/ // -> p\_1
2 /\*@ assert p(500000000) > 0; \*/ // -> p\_2
3 /\*@ assert p(200000000) > 0; \*/ // -> p\_3

Crama Solutions The Problem With Functions

#### One Function Per Call-Site

• Generate a different C function for each call-site

1 /\*@ assert p(1) == 1000000001; \*/ // -> p\_1
2 /\*@ assert p(500000000) > 0; \*/ // -> p\_2
3 /\*@ assert p(200000000) > 0; \*/ // -> p\_3

Issues :

frama C Star August The Problem With Functions

#### One Function Per Call-Site

• Generate a different C function for each call-site

1 /\*@ assert p(1) == 1000000001; \*/ // -> p\_1
2 /\*@ assert p(500000000) > 0; \*/ // -> p\_2
3 /\*@ assert p(200000000) > 0; \*/ // -> p\_3

- Issues :
  - Code duplication
  - 1 /\*@ assert p(1) == p(1); \*/ //Generate the same function twice!

frama C Struct August The Problem With Functions

#### One Function Per Call-Site

• Generate a different C function for each call-site

```
1 /*@ assert p(1) == 1000000001; */ // -> p_1
2 /*@ assert p(500000000) > 0; */ // -> p_2
3 /*@ assert p(200000000) > 0; */ // -> p_3
```

Issues :

- Code duplication
- 1 /\*@ assert p(1) == p(1); \*/ //Generate the same function twice!
- Unclear for recursive functions



#### One Function Per Call-Context

# Generate a C function for each call-context A call context is the data of the interval *I*(*t*) for every argument of the function



### One Function Per Call-Context

- Generate a C function for each call-context
   A call context is the data of the interval *I*(*t*) for every argument of the function
- Conservative in reuse of function
- 1 /\*@ assert p(1) == p(1); \*/ //reuse the function
- 2 /\*@ assert p(2) != p(1); \*/ //one new function



#### Dealing With Recursion

Assumption

The oracle  ${\mathcal I}$  gives an interval adapted to recursive functions



#### Dealing With Recursion

#### Assumption

The oracle  $\mathcal I$  gives an interval adapted to recursive functions

```
For instance :
```





### A Complex Translation

Starting from simple idea, the translation became non-trivial

- Complex code using GMP
- Subtle argument for reusing function



# A Complex Translation

Starting from simple idea, the translation became non-trivial

- Complex code using GMP
- Subtle argument for reusing function
- How to ensure the translation is correct?



#### Formalizing the Translation

• We formalized (pen and paper style) this translation



### Formalizing the Translation

- We formalized (pen and paper style) this translation
- Macro based system Required to avoid combinatorial blowup



# Formalizing the Translation

- We formalized (pen and paper style) this translation
- Macro based system Required to avoid combinatorial blowup

```
Example :

\mathbb{Z}_{assgn}(\tau_z, v, z) :=

MATCH \tau_z WITH :

CASE int :

v = z;

CASE mpz :

mpz_set_string(v, "z");
```



#### Assumptions

# There exists a semantics the language we consider (see article) : C programs, ACSL annotations, GMP library calls



#### Assumptions

There exists a semantics the language we consider (see article) : C programs, ACSL annotations, GMP library calls

#### Assumption

The inference given by  $\mathcal{I}$  always terminates (even on non-terminating recursive functions)



#### Assumptions

There exists a semantics the language we consider (see article) : C programs, ACSL annotations, GMP library calls

#### Assumption

The inference given by  $\mathcal{I}$  always terminates (even on non-terminating recursive functions)

#### Assumption

The inference given is sound : All possible semantics of t belong to  $\mathcal{I}(t)$ 



Theorem

The translation of the subset of ACSL to the subset of C with calls to GMP library that we have defined preserves the semantics.



#### Theorem

The translation of the subset of ACSL to the subset of C with calls to GMP library that we have defined preserves the semantics.

Proof by induction on the different cases.



#### Theorem

The translation of the subset of ACSL to the subset of C with calls to GMP library that we have defined preserves the semantics.

Proof by induction on the different cases.

Avoid combinatorial blowup by proving the functional correctness of the macros independently  $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ 



#### What's Next?

#### • Formalize and prove the oracle $\mathcal{I}$ WIP : an article submitted !



#### What's Next?

- Formalize and prove the oracle  $\mathcal{I}$ WIP : an article submitted !
- Port the formalization in Coq



#### What's Next?

- Formalize and prove the oracle  $\mathcal{I}$ WIP : an article submitted !
- Port the formalization in Coq
- Study interaction between memory properties [5] and arithmetic ones



# Thank you



#### References I

- P. Baudin et al. "The Dogged Pursuit of Bug-Free C Programs : The Frama-C Software Analysis Platform". In : Communications of the ACM (2021).
- [2] P. Baudin et al. ACSL : ANSI/ISO C Specification Language. Rapp. tech. CEA List et Inria. url : https://frama-c.com/download/acsl.pdf.
- [3] J. Signoles. E-ACSL Version 1.18. Implementation in Frama-C Plug-in E-ACSL 26.1. http://frama-c.com/download/eacsl/e-acsl-implementation.pdf. 2022.
- [4] N. Kosmatov, F. Maurica et J. Signoles. "Efficient Runtime Assertion Checking for Properties over Mathematical Numbers".
   In : International Conference on Runtime Verification (RV). 2020.



#### References II

# [5] D. Ly et al. "Verified Runtime Assertion Checking for Memory Properties". In : International Conference on Tests and Proofs (TAP). 2020.