
Formalizing an Efficient Runtime Assertion
Checker for an Arithmetic Language with

Functions and Predicates

Thibaut Benjamin, Julien Signoles

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

SAC-SVT 2023



RAC of Arithmetic in E-ACSL

RAC of Arithmetic in E-ACSL

2/24



RAC of Arithmetic in E-ACSL

Base Principle for Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

3/24



RAC of Arithmetic in E-ACSL

Base Principle for Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

3/24



RAC of Arithmetic in E-ACSL

Base Principle for Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

3/24



RAC of Arithmetic in E-ACSL

Base Principle for Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

3/24



RAC of Arithmetic in E-ACSL

Base Principle for Inline Monitoring

C with
Logical Annotations

Not Self-Checking
Program

C without
Logical Annotations

Self-Checking
Program

Compilation

Monitor Generation

Compilation

Semantics
Preservation

3/24



RAC of Arithmetic in E-ACSL

Minimal Example

1 int main (){
2 int x = 5;
3 //@ assert x + 1 == 6;
4 return 0;
5 }

→

1 int main (){
2 int x = 5;
3 assert (x + 1 == 6);
4 return 0;
5 }

4/24



RAC of Arithmetic in E-ACSL

Minimal Example

1 int main (){
2 int x = 5;
3 //@ assert x + 1 == 6;
4 return 0;
5 }

→

1 int main (){
2 int x = 5;
3 assert (x + 1 == 6);
4 return 0;
5 }

4/24



RAC of Arithmetic in E-ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software [1]
Collaborative platform for C code verification combining different
analysis methods.

• Specification language : ACSL [2]
• E-ACSL supports in particular [3] :

• Arithmetic Assertions
• User-defined (Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

5/24



RAC of Arithmetic in E-ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software [1]
Collaborative platform for C code verification combining different
analysis methods.

• Specification language : ACSL [2]

• E-ACSL supports in particular [3] :

• Arithmetic Assertions
• User-defined (Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

5/24



RAC of Arithmetic in E-ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software [1]
Collaborative platform for C code verification combining different
analysis methods.

• Specification language : ACSL [2]
• E-ACSL supports in particular [3] :

• Arithmetic Assertions

• User-defined (Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

5/24



RAC of Arithmetic in E-ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software [1]
Collaborative platform for C code verification combining different
analysis methods.

• Specification language : ACSL [2]
• E-ACSL supports in particular [3] :

• Arithmetic Assertions
• User-defined (Recursive) Functions and Predicates

• Quantifications on Finite Domains
• Pointer Status and Memory Properties

5/24



RAC of Arithmetic in E-ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software [1]
Collaborative platform for C code verification combining different
analysis methods.

• Specification language : ACSL [2]
• E-ACSL supports in particular [3] :

• Arithmetic Assertions
• User-defined (Recursive) Functions and Predicates
• Quantifications on Finite Domains

• Pointer Status and Memory Properties

5/24



RAC of Arithmetic in E-ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software [1]
Collaborative platform for C code verification combining different
analysis methods.

• Specification language : ACSL [2]
• E-ACSL supports in particular [3] :

• Arithmetic Assertions
• User-defined (Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

5/24



RAC of Arithmetic in E-ACSL

The E-ACSL Plugin

• Plugin part of the Frama-C software [1]
Collaborative platform for C code verification combining different
analysis methods.

• Specification language : ACSL [2]
• E-ACSL supports in particular [3] :

• Arithmetic Assertions
• User-defined (Recursive) Functions and Predicates
• Quantifications on Finite Domains
• Pointer Status and Memory Properties

Today

5/24



RAC of Arithmetic in E-ACSL

In this presentation

We are interested in the translation of a language containing the
following constructs

• Comparison and arithmetic operators
==, !=, <, <=, >, >=
+, *, -, /

• Conditionals
p ? t1 : t2

• User-defined Functions and Predicates
logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

6/24



RAC of Arithmetic in E-ACSL

In this presentation

We are interested in the translation of a language containing the
following constructs

• Comparison and arithmetic operators
==, !=, <, <=, >, >=
+, *, -, /

• Conditionals
p ? t1 : t2

• User-defined Functions and Predicates
logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

6/24



RAC of Arithmetic in E-ACSL

In this presentation

We are interested in the translation of a language containing the
following constructs

• Comparison and arithmetic operators
==, !=, <, <=, >, >=
+, *, -, /

• Conditionals
p ? t1 : t2

• User-defined Functions and Predicates
logic integer f (integer x) = t . . . f(y)
predicate p (integer x) = b . . . p(y)

6/24



Correctness vs. Efficiency

Correctness vs. Efficiency

7/24



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach :

1 // x is an int
2 //@ assert (x+1 == 0);

+ : mathematical integers

→
1 // x is an int
2 assert (x+1 == 0);

+ : machine integers

What if x= 231 − 1 ?

231 == 0
false

Arithmetic Overflow
Undefined Behavior

8/24



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach :

1 // x is an int
2 //@ assert (x+1 == 0);

+ : mathematical integers

→
1 // x is an int
2 assert (x+1 == 0);

+ : machine integers

What if x= 231 − 1 ?

231 == 0
false

Arithmetic Overflow
Undefined Behavior

8/24



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach :

1 // x is an int
2 //@ assert (x+1 == 0);

+ : mathematical integers

→
1 // x is an int
2 assert (x+1 == 0);

+ : machine integers

What if x= 231 − 1 ?

231 == 0
false

Arithmetic Overflow
Undefined Behavior

8/24



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach :

1 // x is an int
2 //@ assert (x+1 == 0);

+ : mathematical integers

→
1 // x is an int
2 assert (x+1 == 0);

+ : machine integers

What if x= 231 − 1 ?

231 == 0
false

Arithmetic Overflow
Undefined Behavior

8/24



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach :

1 // x is an int
2 //@ assert (x+1 == 0);

+ : mathematical integers

→
1 // x is an int
2 assert (x+1 == 0);

+ : machine integers

What if x= 231 − 1 ?
231 == 0
false

Arithmetic Overflow
Undefined Behavior

8/24



Correctness vs. Efficiency

Arithmetic Overflow Issues

Naive Approach :

1 // x is an int
2 //@ assert (x+1 == 0);

+ : mathematical integers

→
1 // x is an int
2 assert (x+1 == 0);

+ : machine integers

What if x= 231 − 1 ?
231 == 0
false

Arithmetic Overflow
Undefined Behavior

8/24



Correctness vs. Efficiency

Solution : Arbitrary Precision Arithmetic

A correct translation generated using the GMP library :

1 // x is an int
2 //@ assert (x+1 == 0);

1 // x is an int
2 mpz_t y, z, o, r;
3 mpz_init_set_si(y, x);
4 mpz_init_set_si(o, 1);
5 mpz_init(r);
6 mpz_add(r, y, o);
7 mpz_init_set_si(z, 0);
8 int c = mpz_cmp(r, 0);
9 assert (c == 0);

10 mpz_clear(y);
11 mpz_clear(z);
12 mpz_clear(o);
13 mpz_clear(r);

9/24



Correctness vs. Efficiency

Static Analysis

machine integers incorrect efficient simple
GMP integers correct inefficient complex

Getting the best of both worlds via a static analysis [4]
Today : the analysis is a blackbox I : term → interval

• I(t) is contained in the integers representable by machine
Can safely use machine integers

• Otherwise
Use GMP integers in case there is an overflow

10/24



Correctness vs. Efficiency

Static Analysis

machine integers incorrect efficient simple
GMP integers correct inefficient complex

Getting the best of both worlds via a static analysis [4]

Today : the analysis is a blackbox I : term → interval

• I(t) is contained in the integers representable by machine
Can safely use machine integers

• Otherwise
Use GMP integers in case there is an overflow

10/24



Correctness vs. Efficiency

Static Analysis

machine integers incorrect efficient simple
GMP integers correct inefficient complex

Getting the best of both worlds via a static analysis [4]
Today : the analysis is a blackbox I : term → interval

• I(t) is contained in the integers representable by machine
Can safely use machine integers

• Otherwise
Use GMP integers in case there is an overflow

10/24



Correctness vs. Efficiency

Static Analysis

machine integers incorrect efficient simple
GMP integers correct inefficient complex

Getting the best of both worlds via a static analysis [4]
Today : the analysis is a blackbox I : term → interval

• I(t) is contained in the integers representable by machine
Can safely use machine integers

• Otherwise
Use GMP integers in case there is an overflow

10/24



Correctness vs. Efficiency

Static Analysis

machine integers incorrect efficient simple
GMP integers correct inefficient complex

Getting the best of both worlds via a static analysis [4]
Today : the analysis is a blackbox I : term → interval

• I(t) is contained in the integers representable by machine
Can safely use machine integers

• Otherwise
Use GMP integers in case there is an overflow

10/24



The Problem With Functions

The Problem With Functions

11/24



The Problem With Functions

Translating Functions

• Generate a C function that translate the ACSL function

1 logic integer p (integer x) = x + 1000000000;

↓

1 int p (int x) {x + 1000000000;}

• Same issue with arithmetic overflows

1 /*@ assert p(1) == 1000000001; */ //OK
2 /*@ assert p(5000000000) > 0; */ //Not OK
3 /*@ assert p(2000000000) > 0; */ //Not OK

12/24



The Problem With Functions

Translating Functions

• Generate a C function that translate the ACSL function

1 logic integer p (integer x) = x + 1000000000;

↓

1 int p (int x) {x + 1000000000;}

• Same issue with arithmetic overflows

1 /*@ assert p(1) == 1000000001; */ //OK
2 /*@ assert p(5000000000) > 0; */ //Not OK
3 /*@ assert p(2000000000) > 0; */ //Not OK

12/24



The Problem With Functions

One Function Per Call-Site
• Generate a different C function for each call-site
1 /*@ assert p(1) == 1000000001; */ // -> p_1
2 /*@ assert p(5000000000) > 0; */ // -> p_2
3 /*@ assert p(2000000000) > 0; */ // -> p_3

• Issues :

• Code duplication

1 /*@ assert p(1) == p(1); */ // Generate the
same function twice!

• Unclear for recursive functions

1 /*@ logic integer f (integer x) =
2 x >= 5000000000 ? 0 : f(x + 1) + 1 */
3 ...
4 //@ assert f(0) = 5000000000 // the

recursive call escapes the type int

13/24



The Problem With Functions

One Function Per Call-Site
• Generate a different C function for each call-site
1 /*@ assert p(1) == 1000000001; */ // -> p_1
2 /*@ assert p(5000000000) > 0; */ // -> p_2
3 /*@ assert p(2000000000) > 0; */ // -> p_3

• Issues :

• Code duplication

1 /*@ assert p(1) == p(1); */ // Generate the
same function twice!

• Unclear for recursive functions

1 /*@ logic integer f (integer x) =
2 x >= 5000000000 ? 0 : f(x + 1) + 1 */
3 ...
4 //@ assert f(0) = 5000000000 // the

recursive call escapes the type int

13/24



The Problem With Functions

One Function Per Call-Site
• Generate a different C function for each call-site
1 /*@ assert p(1) == 1000000001; */ // -> p_1
2 /*@ assert p(5000000000) > 0; */ // -> p_2
3 /*@ assert p(2000000000) > 0; */ // -> p_3

• Issues :
• Code duplication

1 /*@ assert p(1) == p(1); */ // Generate the
same function twice!

• Unclear for recursive functions

1 /*@ logic integer f (integer x) =
2 x >= 5000000000 ? 0 : f(x + 1) + 1 */
3 ...
4 //@ assert f(0) = 5000000000 // the

recursive call escapes the type int

13/24



The Problem With Functions

One Function Per Call-Site
• Generate a different C function for each call-site
1 /*@ assert p(1) == 1000000001; */ // -> p_1
2 /*@ assert p(5000000000) > 0; */ // -> p_2
3 /*@ assert p(2000000000) > 0; */ // -> p_3

• Issues :
• Code duplication

1 /*@ assert p(1) == p(1); */ // Generate the
same function twice!

• Unclear for recursive functions

1 /*@ logic integer f (integer x) =
2 x >= 5000000000 ? 0 : f(x + 1) + 1 */
3 ...
4 //@ assert f(0) = 5000000000 // the

recursive call escapes the type int
13/24



The Problem With Functions

One Function Per Call-Context

• Generate a C function for each call-context
A call context is the data of the interval I(t) for every argument of the
function

• Conservative in reuse of function

1 /*@ assert p(1) == p(1); */ //reuse the
function

2 /*@ assert p(2) != p(1); */ //one new
function

14/24



The Problem With Functions

One Function Per Call-Context

• Generate a C function for each call-context
A call context is the data of the interval I(t) for every argument of the
function

• Conservative in reuse of function

1 /*@ assert p(1) == p(1); */ //reuse the
function

2 /*@ assert p(2) != p(1); */ //one new
function

14/24



The Problem With Functions

Dealing With Recursion

Assumption
The oracle I gives an interval adapted to recursive functions

For instance :

1 /*@ logic integer f (integer x) =
2 x >= 5000000000 ? 1 : f(x + 1) + 1 */
3 // -> interval for x+1: [1..5000000001]
4 ...
5 //@ assert f(0) = 5000000000
6 // -> interval for 0: [0..5000000000]

15/24



The Problem With Functions

Dealing With Recursion

Assumption
The oracle I gives an interval adapted to recursive functions

For instance :

1 /*@ logic integer f (integer x) =
2 x >= 5000000000 ? 1 : f(x + 1) + 1 */
3 // -> interval for x+1: [1..5000000001]
4 ...
5 //@ assert f(0) = 5000000000
6 // -> interval for 0: [0..5000000000]

15/24



Functional Correctness

Functional Correctness

16/24



Functional Correctness

A Complex Translation

• Starting from simple idea, the translation became non-trivial
• Complex code using GMP
• Subtle argument for reusing function

• How to ensure the translation is correct ?

17/24



Functional Correctness

A Complex Translation

• Starting from simple idea, the translation became non-trivial
• Complex code using GMP
• Subtle argument for reusing function

• How to ensure the translation is correct ?

17/24



Functional Correctness

Formalizing the Translation

• We formalized (pen and paper style) this translation

• Macro based system
Required to avoid combinatorial blowup

Example :
Z_assgn(τz , v , z) :=

MATCH τz WITH :
CASE int :
v = z;

CASE mpz :
mpz_set_string(v , ”z”);

18/24



Functional Correctness

Formalizing the Translation

• We formalized (pen and paper style) this translation

• Macro based system
Required to avoid combinatorial blowup

Example :
Z_assgn(τz , v , z) :=

MATCH τz WITH :
CASE int :
v = z;

CASE mpz :
mpz_set_string(v , ”z”);

18/24



Functional Correctness

Formalizing the Translation

• We formalized (pen and paper style) this translation

• Macro based system
Required to avoid combinatorial blowup

Example :
Z_assgn(τz , v , z) :=

MATCH τz WITH :
CASE int :
v = z;

CASE mpz :
mpz_set_string(v , ”z”);

18/24



Functional Correctness

Assumptions

There exists a semantics the language we consider (see article) :
C programs, ACSL annotations, GMP library calls

Assumption
The inference given by I always terminates (even on non-terminating
recursive functions)

Assumption
The inference given is sound : All possible semantics of t belong to I(t)

19/24



Functional Correctness

Assumptions

There exists a semantics the language we consider (see article) :
C programs, ACSL annotations, GMP library calls

Assumption
The inference given by I always terminates (even on non-terminating
recursive functions)

Assumption
The inference given is sound : All possible semantics of t belong to I(t)

19/24



Functional Correctness

Assumptions

There exists a semantics the language we consider (see article) :
C programs, ACSL annotations, GMP library calls

Assumption
The inference given by I always terminates (even on non-terminating
recursive functions)

Assumption
The inference given is sound : All possible semantics of t belong to I(t)

19/24



Functional Correctness

Functional Correctness

Theorem
The translation of the subset of ACSL to the subset of C with calls to
GMP library that we have defined preserves the semantics.

Proof by induction on the different cases.

Avoid combinatorial blowup by proving the functional correctness of the
macros independently !

20/24



Functional Correctness

Functional Correctness

Theorem
The translation of the subset of ACSL to the subset of C with calls to
GMP library that we have defined preserves the semantics.

Proof by induction on the different cases.

Avoid combinatorial blowup by proving the functional correctness of the
macros independently !

20/24



Functional Correctness

Functional Correctness

Theorem
The translation of the subset of ACSL to the subset of C with calls to
GMP library that we have defined preserves the semantics.

Proof by induction on the different cases.

Avoid combinatorial blowup by proving the functional correctness of the
macros independently !

20/24



Functional Correctness

What’s Next ?

• Formalize and prove the oracle I
WIP : an article submitted !

• Port the formalization in Coq

• Study interaction between memory properties [5] and arithmetic
ones

21/24



Functional Correctness

What’s Next ?

• Formalize and prove the oracle I
WIP : an article submitted !

• Port the formalization in Coq

• Study interaction between memory properties [5] and arithmetic
ones

21/24



Functional Correctness

What’s Next ?

• Formalize and prove the oracle I
WIP : an article submitted !

• Port the formalization in Coq

• Study interaction between memory properties [5] and arithmetic
ones

21/24



Thank you

Thank you

22/24



Thank you

References I

[1] P. Baudin et al. “The Dogged Pursuit of Bug-Free C Programs :
The Frama-C Software Analysis Platform”. In : Communications of
the ACM (2021).

[2] P. Baudin et al. ACSL : ANSI/ISO C Specification Language.
Rapp. tech. CEA List et Inria. url :
https://frama-c.com/download/acsl.pdf.

[3] J. Signoles. E-ACSL Version 1.18. Implementation in Frama-C
Plug-in E-ACSL 26.1. http://frama-c.com/download/e-
acsl/e-acsl-implementation.pdf. 2022.

[4] N. Kosmatov, F. Maurica et J. Signoles. “Efficient Runtime
Assertion Checking for Properties over Mathematical Numbers”.
In : International Conference on Runtime Verification (RV). 2020.

23/24

https://frama-c.com/download/acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl-implementation.pdf
http://frama-c.com/download/e-acsl/e-acsl-implementation.pdf


Thank you

References II

[5] D. Ly et al. “Verified Runtime Assertion Checking for Memory
Properties”. In : International Conference on Tests and Proofs
(TAP). 2020.

24/24


	RAC of Arithmetic in E-ACSL
	Correctness vs. Efficiency
	The Problem With Functions
	Functional Correctness
	Thank you
	Références

