A Coherator For Semi-Cubical Weak ω -Categories

Thibaut Benjamin Journées LHC, 7 June 2023

University of Cambridge

Higher categories may come in different flavours

- existence of cells up to a certain level
- strict vs. weak
- various basic shapes: globes, simplices, cubes, opetopes, ...

Higher categories may come in different flavours
 existence of cells up to a certain level ω
 strict vs. weak
 various basic shapes: globes, simplices, cubes, opetopes, ... globes/cubes

▶ Higher categories may come in different flavours

- existence of cells up to a certain level
- strict vs. weak
- various basic shapes: globes, simplices, cubes, opetopes, ...
- \blacktriangleright Globular weak ω -categories
 - Batanin-Leinster: Algebras for the initial globular operad with contraction.
 - Maltsiniotis (after Grothendieck): Defined by a *coherator*.
 - Ara (a bit of help from Bourke): The Grothendieck-Maltsiniotis definition can specialize to the Batanin-Leinster one.

todav

globes/cubes

weak

- Aim: Define a coherator for semi-cubical weak ω-categories à la Grothendieck-Maltsiniotis (WIP).
 - weak $\omega\text{-}\mathsf{categories}$ based on the category of semi-cubes
 - Unpublished work I did during my PhD (circa. 2019/2020)
 - Please give me your feedback

- Aim: Define a coherator for semi-cubical weak ω-categories à la Grothendieck-Maltsiniotis (WIP).
 - weak $\omega\text{-}\mathsf{categories}$ based on the category of semi-cubes
 - Unpublished work I did during my PhD (circa. 2019/2020)
 - Please give me your feedback
- Cubical weak ω -categories
 - Kachour: weak ω -categories on reflexive cubes à la Batanin-Leinster, but newer publications getting closer to the Grothendieck-Maltsiniotis style.
 - Grandis: cubical categories with symmetries.

Grothendieck-Maltsiniotis globular weak ω -categories

► The *category of globes* G:

$$0 \xrightarrow[\tau]{\sigma} 1 \xrightarrow[\tau]{\sigma} 2 \xrightarrow[\tau]{\sigma} \dots \qquad \sigma \sigma = \tau \sigma \quad \sigma \tau = \tau \tau$$

► The category of globes G:

$$0 \xrightarrow[\tau]{\sigma} 1 \xrightarrow[\tau]{\sigma} 2 \xrightarrow[\tau]{\sigma} \dots \sigma \sigma = \tau \sigma \quad \sigma \tau = \tau \tau$$

► *Globular sets* are presheaves on G:

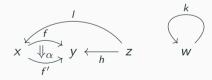
$$X_0 \rightleftharpoons_t^s X_1 \rightleftharpoons_t^s X_2 \rightleftharpoons_t^s \dots ss = st \quad ts = tt$$

► The category of globes G:

$$0 \xrightarrow[\tau]{\sigma} 1 \xrightarrow[\tau]{\sigma} 2 \xrightarrow[\tau]{\sigma} \dots \qquad \sigma \sigma = \tau \sigma \quad \sigma \tau = \tau \tau$$

► *Globular sets* are presheaves on G:

$$X_0 \stackrel{s}{\underset{t}{\longleftarrow}} X_1 \stackrel{s}{\underset{t}{\longleftarrow}} X_2 \stackrel{s}{\underset{t}{\longleftarrow}} \dots \qquad ss = st \quad ts = tt$$

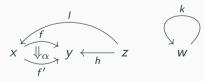


► The category of globes G:

$$0 \xrightarrow[\tau]{\sigma} 1 \xrightarrow[\tau]{\sigma} 2 \xrightarrow[\tau]{\sigma} \dots \qquad \sigma \sigma = \tau \sigma \quad \sigma \tau = \tau \tau$$

► *Globular sets* are presheaves on G:

$$X_0 \rightleftharpoons_t^s X_1 \rightleftharpoons_t^s X_2 \rightleftharpoons_t^s \dots ss = st \quad ts = tt$$



▶ *Disks* are the representable presheaves

$$D^0: \cdot \qquad D^1: \cdot \longrightarrow \cdot \qquad D^2: \cdot \bigoplus_{i=1}^{i} \cdot \qquad D^3: \cdot \bigoplus_{j=1}^{i} \cdot \qquad \dots$$

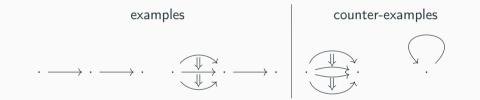
4

Pasting Schemes/Globular Sums

idea: Pasting schemes are the globular sets that should describe a unique composition.

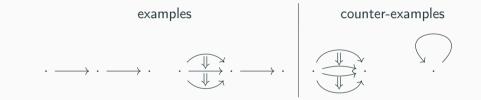
Pasting Schemes/Globular Sums

idea: Pasting schemes are the globular sets that should describe a unique composition.



Pasting Schemes/Globular Sums

idea: Pasting schemes are the globular sets that should describe a unique composition.



Formally, they are obtained as *globular sums*, i.e., limits of the following form

► Every pasting scheme P has a boundary ∂P: Formally replace every occurrence of dim P in the globular sum with dim P - 1

► Every pasting scheme P has a boundary ∂P: Formally replace every occurrence of dim P in the globular sum with dim P - 1

▶ There exists two maps, called source and target

$$\partial_P^-, \partial_P^+ : \partial P \to P$$

► Every pasting scheme P has a boundary ∂P: Formally replace every occurrence of dim P in the globular sum with dim P - 1

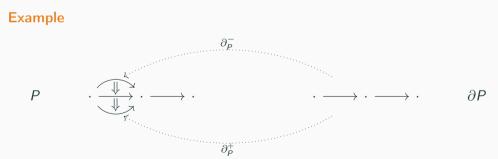
▶ There exists two maps, called source and target

$$\partial_P^-, \partial_P^+ : \partial P \to P$$

Example

- ► Every pasting scheme P has a boundary ∂P: Formally replace every occurrence of dim P in the globular sum with dim P - 1
- ▶ There exists two maps, called source and target

$$\partial_P^-, \partial_P^+ : \partial P \to P$$



▶ Globular extension: a category C equipped with a functor $\mathbb{G} \to C$ such that C has the globular sums.

Globular Theories

- ▶ Globular extension: a category C equipped with a functor $\mathbb{G} \to C$ such that C has the globular sums.
- ► The initial globular extension: Θ_0 Explicitly, Θ_0 is the full subcategory of $\widehat{\mathbb{G}}$ whose objects are the pasting schemes.

- ▶ Globular extension: a category C equipped with a functor $\mathbb{G} \to C$ such that C has the globular sums.
- ► The initial globular extension: Θ₀ Explicitly, Θ₀ is the full subcategory of G whose objects are the pasting schemes.
- ▶ Globular theory: a globular extension C such that the unique map $\Theta_0 \rightarrow C$ is faithful and identity on objects. Intuition: a globular theory C contain pasting schemes with operations producing extra cells.

- ▶ Globular extension: a category C equipped with a functor $\mathbb{G} \to C$ such that C has the globular sums.
- ► The initial globular extension: Θ_0 Explicitly, Θ_0 is the full subcategory of $\widehat{\mathbb{G}}$ whose objects are the pasting schemes.
- ▶ Globular theory: a globular extension C such that the unique map $\Theta_0 \rightarrow C$ is faithful and identity on objects. Intuition: a globular theory C contain pasting schemes with operations producing extra cells.
- ▶ Reminder on Yoneda Lemma: cells in $P \iff$ maps $D^n \rightarrow P$ in C

Coherator for Globular Weak ω -categories

► Given an object P in a globular theory C, a cell x is algebraic, if there are no non-trivial map f : Q → P in Θ₀ such that x is in the image of f. Intuition: All maps in Θ₀ are monos → algebraic = "uses up" all the data in P.

Coherator for Globular Weak ω -categories

- Given an object P in a globular theory C, a cell x is algebraic, if there are no non-trivial map f : Q → P in Θ₀ such that x is in the image of f.
 Intuition: All maps in Θ₀ are monos → algebraic = "uses up" all the data in P.
- A lift of a pair of parallel cells x, y of dimension n is a cell of dimension n + 1 is a cell z such that s(z) = x and t(z) = y.

Coherator for Globular Weak ω -categories

- Given an object P in a globular theory C, a cell x is algebraic, if there are no non-trivial map f : Q → P in Θ₀ such that x is in the image of f.
 Intuition: All maps in Θ₀ are monos → algebraic = "uses up" all the data in P.
- A lift of a pair of parallel cells x, y of dimension n is a cell of dimension n + 1 is a cell z such that s(z) = x and t(z) = y.
- \blacktriangleright The *coherator* Θ_∞ is the globular theory constructed as follows

$$\Theta_{\infty} = \mathsf{lim}(\Theta_0 o \Theta_1 o \Theta_2 o \ldots)$$

where Θ_{n+1} is formally obtained from Θ_n by universally adding a lift for every pair of cells (x, y) in P which either:

- write as $(\partial_X^-(x'), \partial_X^+(y'))$ with x', y' algebraic in ∂P
- are both algebraic in P

and for which a lift was not added at an earlier stage.

▶ Weak ω -categories are presheaves over Θ_{∞} that preserve the globular sums.

▶ Weak ω -categories are presheaves over Θ_{∞} that preserve the globular sums.

Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.

- ▶ Weak ω -categories are presheaves over Θ_{∞} that preserve the globular sums.
- Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.
 - Adding a lift for every pair (x, y) that factor as ∂⁻_X(x'), ∂⁺_X(y'), with x', y' algebraic There exists a cell witnessing the composition of X from x to y
 - Adding a lift for every pair (x, y) that are algebraic
 Any two compositions of X are related by a higher cell: weak uniqueness

- ▶ Weak ω -categories are presheaves over Θ_∞ that preserve the globular sums.
- Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.
 - Adding a lift for every pair (x, y) that factor as ∂⁻_X(x'), ∂⁺_X(y'), with x', y' algebraic There exists a cell witnessing the composition of X from x to y
 - Adding a lift for every pair (x, y) that are algebraic
 Any two compositions of X are related by a higher cell: weak uniqueness

▶ Existence + weak uniqueness related with contractibility in Topology/HoTT.

Identities, Compositions, Associators

We consider a weak ω -category X:

▶ A 0-cell x defines a map $x : D^0 \to X$. D^0 has a unique cell x', which is algebraic, hence the pair x', x' has a lift id(x'), which induces a 1-cell id(x) : $x \to x$ in X.

Identities, Compositions, Associators

We consider a weak ω -category X:

- ▶ A 0-cell x defines a map $x : D^0 \to X$. D^0 has a unique cell x', which is algebraic, hence the pair x', x' has a lift id(x'), which induces a 1-cell id(x) : $x \to x$ in X.
- ► A diagram $x \xrightarrow{f} y \xrightarrow{g} z$ in X is an element of $X(D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1)$ (preservation of globular sums). $D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1$ is given by $x' \xrightarrow{f'} y' \xrightarrow{g'} z'$, and x' is algebraic in the source, z' is algebraic in the target, so there exists a cell $f' \star_0 g' : x' \to z'$, whose image in X is $f \star_0 g : x \to z$

We consider a weak ω -category X:

- ▶ A 0-cell x defines a map $x : D^0 \to X$. D^0 has a unique cell x', which is algebraic, hence the pair x', x' has a lift id(x'), which induces a 1-cell id(x) : $x \to x$ in X.
- ▶ A diagram $x \xrightarrow{f} y \xrightarrow{g} z$ in X is an element of $X(D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1)$ (preservation of globular sums). $D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1$ is given by $x' \xrightarrow{f'} y' \xrightarrow{g'} z'$, and x' is algebraic in the source, z' is algebraic in the target, so there exists a cell $f' \star_0 g' : x' \to z'$, whose image in X is $f \star_0 g : x \to z$
- ► $D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1$ is given by $x' \xrightarrow{f'} y' \xrightarrow{g'} z' \xrightarrow{h'} w'$, by the previous point, $f' \star_0 (g' \star_0 h')$ and $(f' \star_0 g') \star_0 h'$ both exist, are parallel and are algebraic, hence there exists a cell $\alpha_{f',g',h'} : f' \star_0 (g' \star_0 h') \to (f' \star_0 g') \star_0 h'$. For $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$ in X, this gives $\alpha_{f,g,h} : f \star_0 (g \star_0 h) \to (f \star_0 g) \star_0 h$

Coherator for semi-cubical weak ω -categories

Semi-Cubical Sets and Semi-Cubical Pasting Schemes

► The *category of semi-cubes* □:

$$0 \xrightarrow[\tau_0]{\sigma_0} 1 \xrightarrow[-\tau_1 \rightarrow]{\sigma_1 \rightarrow} 2 \xrightarrow[-\tau_0 \rightarrow]{\sigma_1 \rightarrow}{\sigma_1 \rightarrow} \dots \qquad \forall j < i, \begin{cases} \sigma_j \sigma_i = \sigma_{i+1} \sigma_j & \sigma_j \tau_i = \tau_{i+1} \sigma_j \\ \sigma_j \sigma_i = \sigma_{i+1} \tau_j & \sigma_j \tau_i = \tau_{i+1} \tau_j \\ \tau_j \sigma_i = \sigma_{i+1} \tau_j & \tau_j \tau_i = \tau_{i+1} \tau_j \end{cases}$$

Semi-Cubical Sets and Semi-Cubical Pasting Schemes

▶ The *category of semi-cubes* □:

$$0 \xrightarrow[\tau_0]{\sigma_0} 1 \xrightarrow[-\tau_1 \to]{\sigma_1 \to} 2 \xrightarrow[-\tau_1 \to]{\sigma_1 \to} -\tau_1 \to -\tau_1 \to -\tau_1 \to -\tau_2 \to -\tau_1 \to -\tau_1 \to -\tau_2 \to -\tau_1 \to -\tau_1$$

► *Semi-cubical sets* are presheaves on □:

$$X_0 \xleftarrow[t_0]{s_0} X_1 \xleftarrow[t_0]{s_1 t_0} X_1 \xleftarrow[t_0]{s_1 t_0} \cdots \qquad \forall j < i, \begin{cases} s_i s_j = s_j s_{i+1} & t_i s_j = s_j t_{i+1} \\ s_i t_j = t_j s_{i+1} & t_i t_j = t_i t_{i+1} \end{cases}$$

Semi-Cubical Sets and Semi-Cubical Pasting Schemes

▶ The *category of semi-cubes* □:

$$0 \xrightarrow[\tau_0]{\sigma_0} 1 \xrightarrow[-\tau_1 \rightarrow]{\sigma_1 \rightarrow} 2 \xrightarrow[-\tau_1 \rightarrow]{\sigma_1 \rightarrow} -\tau_1 \rightarrow} \cdots \qquad \forall j < i, \begin{cases} \sigma_j \sigma_i = \sigma_{i+1} \sigma_j & \sigma_j \tau_i = \tau_{i+1} \sigma_j \\ \sigma_j \sigma_i = \sigma_{i+1} \tau_j & \sigma_j \tau_i = \tau_{i+1} \tau_j \\ \tau_j \sigma_i = \sigma_{i+1} \tau_j & \tau_j \tau_i = \tau_{i+1} \tau_j \end{cases}$$

► Semi-cubical sets are presheaves on □:

$$X_0 \rightleftharpoons_{t_0}^{s_0} X_1 \xleftarrow{\leqslant s_1 - \atop \leqslant s_0 - \atop \leqslant t_1 - \atop \leqslant t_1 - \atop \leqslant t_1 - } \cdots \qquad \forall j < i, \begin{cases} s_i s_j = s_j s_{i+1} & t_i s_j = s_j t_{i+1} \\ s_i t_j = t_j s_{i+1} & t_i t_j = t_i t_{i+1} \end{cases}$$

11

Semi-Cubes and Semi-Cubical Pasting Schemes

▶ The representable semi-cubical sets are the *semi-cubes*

Semi-Cubes and Semi-Cubical Pasting Schemes

▶ The representable semi-cubical sets are the *semi-cubes*

 Semi-cubical pasting schemes are rectangular grids Example:

Semi-Cubes and Semi-Cubical Pasting Schemes

▶ The representable semi-cubical sets are the *semi-cubes*

Semi-cubical pasting schemes are rectangular grids Example:

► A semi-cubical pasting scheme *P* of dimension *n* has *n* boundary $\partial_i P$, with maps $\partial_{i,P}^-$, $\partial_{i,P}^+$: $\partial_i P \rightarrow P$, for $0 \le i < n$

Semi-Cubical Theories

▶ Define the *cubical sums*: diagrams for which pasting schemes are limits, and *cubical extension*: a category C equipped with a functor □ → C such that C has the cubical sums, with the initial cubical extension Θ₀[□]

Semi-Cubical Theories

- ▶ Define the *cubical sums*: diagrams for which pasting schemes are limits, and *cubical extension*: a category C equipped with a functor □ → C such that C has the cubical sums, with the initial cubical extension Θ₀[□]
- ▶ Cubical theory: a cubical extension C such that the unique map $\Theta_0^{\Box} \to C$ is faithful and identity on objects. Intuition: a cubical theory C contain pasting schemes with operations producing extra cells.

Semi-Cubical Theories

- ▶ Define the *cubical sums*: diagrams for which pasting schemes are limits, and *cubical extension*: a category C equipped with a functor □ → C such that C has the cubical sums, with the initial cubical extension Θ₀[□]
- Cubical theory: a cubical extension C such that the unique map $\Theta_0^{\Box} \to C$ is faithful and identity on objects. Intuition: a cubical theory C contain pasting schemes with operations producing extra cells.
- A family of cells x₁,..., x_n in an object P of a cubical theory are simultaneously algebraic if there are no non-trivial map f : Q → P in Θ₀[□] such that all the x_i are in the image of f.

Coherator for Semi-Cubical Weak ω -categories

► A family of cells (x₁,..., x_n, y₁,..., y_n) of dimension n - 1 is compatible if the cells fit in the boundary of an n-cube. A lift of a family of compatible cells x₁,..., x_n, y₁,..., y_n of dimension n - 1 is a cell z of dimension n is a cell z such that s_i(z) = x_i and t_i(z) = y_i.

Coherator for Semi-Cubical Weak ω -categories

- ► A family of cells (x₁,..., x_n, y₁,..., y_n) of dimension n 1 is compatible if the cells fit in the boundary of an n-cube. A lift of a family of compatible cells x₁,..., x_n, y₁,..., y_n of dimension n 1 is a cell z of dimension n is a cell z such that s_i(z) = x_i and t_i(z) = y_i.
- ▶ The coherator Θ_{∞}^{\Box} is the cubical theory constructed as follows

$$\Theta^{\square}_{\infty} = \mathsf{lim}(\Theta^{\square}_0 o \Theta^{\square}_1 o \Theta^{\square}_2 o \ldots)$$

where Θ_{n+1}^{\square} is formally obtained from Θ_n^{\square} by universally adding a lift for every compatible family of cells $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ in *P*, where either:

- we can decompose $x_i = \partial_{i,P}^-(x'_i)$ and $y_i = \partial_{i,P}^+(y'_i)$ with x'_i, y'_i algebraic in $\partial_i P$
- both families (x_i) and (y_i) are algebraic in P

and for which a lift was not added at an earlier stage.

Consider a cubical weak ω -category X:

For every 0-cell x, we can construct a 1-cell $id(x) : x \to x$

Consider a cubical weak ω -category X:

- For every 0-cell x, we can construct a 1-cell $id(x) : x \to x$
- For every diagram $x \xrightarrow{f} y \xrightarrow{g} z$, we can construct a 1-cell $f \star_0 g : x \to z$

Consider a cubical weak ω -category X:

For every 0-cell x, we can construct a 1-cell $id(x) : x \to x$

For every diagram $x \xrightarrow{f} y \xrightarrow{g} z$, we can construct a 1-cell $f \star_0 g : x \to z$

► For every diagram
$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$
, we can construct a 2-cell $\begin{array}{c} x \xrightarrow{f \star_0 g} z \\ f \downarrow & \downarrow_{\alpha_{f,g,h}} & \downarrow_h \\ y \xrightarrow{g \star_0 h} & w \end{array}$

Interchange

$$\begin{array}{cccc} x & \stackrel{f}{\longrightarrow} y \\ h \downarrow & \downarrow_{\alpha} & \downarrow_{k} & x \xrightarrow{f} y \\ k' & = f' \rightarrow y' & \text{, we have a 2-cell } h_{\star_{0}}h' \downarrow & \downarrow_{\alpha \star_{1}\alpha'} & \downarrow_{k \star_{0}}k' \\ h' \downarrow & \downarrow_{\alpha'} & \downarrow_{k'} & x'' \xrightarrow{f''} y'' \\ x'' & \stackrel{f''}{\xrightarrow{f''}} y'' \end{array}$$

Interchange

$$\begin{array}{cccc} x & \xrightarrow{f} & y \\ h \downarrow & \downarrow_{\alpha} & \downarrow_{k} & x & \xrightarrow{f} & y \\ x' & -f' \rightarrow y' & \text{, we have a 2-cell } h_{\star_{0}}h' \downarrow & \downarrow_{\alpha\star_{1}\alpha'} & \downarrow_{k\star_{0}k'} \\ h' \downarrow & \downarrow_{\alpha'} & \downarrow_{k'} & x'' & \xrightarrow{f''} & y'' \\ x'' & \xrightarrow{f''} & y'' & x'' & \xrightarrow{f''} & y'' \end{array}$$

$$\begin{array}{c} \text{For every diagram} & x & \xrightarrow{f} & y & \xrightarrow{g} & z \\ h \downarrow & \downarrow_{\alpha} & k & \downarrow_{\beta} & \downarrow_{I} & \text{, we have a 2-cell } & x & \xrightarrow{f\star_{0}g} & z \\ h \downarrow & \downarrow_{\alpha\star_{0}\beta} & \downarrow_{I} & \text{, we have a 2-cell } & h \downarrow & \downarrow_{\alpha\star_{0}\beta} & \downarrow_{I} \\ x' & \xrightarrow{f'} & y' & \xrightarrow{g'} & z' & x' & \xrightarrow{f'\star_{0}g'} & z' \end{array}$$

Interchange

$$\begin{array}{c} x \xrightarrow{f} y \\ h \downarrow \quad \downarrow_{\alpha} \quad \downarrow_{k} \\ x' \xrightarrow{f} y' \\ h' \downarrow \quad \downarrow_{\alpha} \quad \downarrow_{k} \\ x' \xrightarrow{f} y' \\ h' \downarrow \quad \downarrow_{\alpha'} \quad \downarrow_{k'} \\ x'' \xrightarrow{f''} y'' \\ x'' \xrightarrow{f''} y'' \\ x'' \xrightarrow{f''} y'' \\ x'' \xrightarrow{f''} y' \xrightarrow{g} z \\ x' \xrightarrow{f \times 0g} z \\ x' \xrightarrow{f \times 0g} z \\ x' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ x' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ x' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ x' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ x' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ x' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ x' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ x' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ x'' \xrightarrow{f' \to y'} y' \xrightarrow{g' \to z'} z' \\ y'' \xrightarrow{g'' \to z'} z'' \\ z'' \xrightarrow{f'' \to y''} z'' \\ z'' \\ z'' \xrightarrow{f'' \to y''} z'' \\ z''' \\ z'''$$

16

Interesting Note on Weak Degeneracies

For every 1-cell $x \xrightarrow{f} y$, one can construct two identity 2-cells

$$\begin{array}{ccc} x & \xrightarrow{f} & y \\ & id(x) \downarrow & \underset{f}{\downarrow} id_{1}(f) & \underset{id(y)}{\downarrow} id(y) \\ & x & \xrightarrow{f} & y \end{array}$$

$$\begin{array}{ccc} x & \stackrel{id(x)}{\longrightarrow} & x \\ & f \downarrow & \underset{f}{\downarrow} id_{0}(f) & \underset{f}{\downarrow} f \\ & y & \stackrel{id(y)}{\longrightarrow} & y \end{array}$$

Interesting Note on Weak Degeneracies

For every 1-cell $x \xrightarrow{f} y$, one can construct two identity 2-cells

$$\begin{array}{ccc} x & \xrightarrow{f} & y \\ & id(x) & \downarrow & \downarrow id_1(f) & \downarrow id(y) \\ & x & \xrightarrow{f} & y \\ & x & \xrightarrow{f} & y \\ & x & \xrightarrow{id(x)} & x \\ & f & \downarrow & \downarrow id_0(f) & \downarrow f \\ & y & \xrightarrow{id(y)} & y \end{array}$$

 $id_1(id(x))$ and $id_0(id(x))$ have the same type, and are equivalent, but not strictly equal!

Thank you!