A Coherator For Semi-Cubical Weak ω-Categories

Thibaut Benjamin
Journées LHC, 7 June 2023
University of Cambridge

Introduction (I)

- Higher categories may come in different flavours
- existence of cells up to a certain level
- strict vs. weak
- various basic shapes: globes, simplices, cubes, opetopes, ...

Introduction (I)

- Higher categories may come in different flavours

today

- existence of cells up to a certain level
- strict vs. weak
- various basic shapes: globes, simplices, cubes, opetopes, ...

Introduction (I)

- Higher categories may come in different flavours
- existence of cells up to a certain level
- strict vs. weak
- various basic shapes: globes, simplices, cubes, opetopes, ...
- Globular weak ω-categories
- Batanin-Leinster: Algebras for the initial globular operad with contraction.
- Maltsiniotis (after Grothendieck): Defined by a coherator.
- Ara (a bit of help from Bourke): The Grothendieck-Maltsiniotis definition can specialize to the Batanin-Leinster one.

Introduction (II)

- Aim: Define a coherator for semi-cubical weak ω-categories à la Grothendieck-Maltsiniotis (WIP).
- weak ω-categories based on the category of semi-cubes
- Unpublished work I did during my PhD (circa. 2019/2020)
- Please give me your feedback

Introduction (II)

- Aim: Define a coherator for semi-cubical weak ω-categories à la Grothendieck-Maltsiniotis (WIP).
- weak ω-categories based on the category of semi-cubes
- Unpublished work I did during my PhD (circa. 2019/2020)
- Please give me your feedback
- Cubical weak ω-categories
- Kachour: weak ω-categories on reflexive cubes à la Batanin-Leinster, but newer publications getting closer to the Grothendieck-Maltsiniotis style.
- Grandis: cubical categories with symmetries.

Grothendieck-Maltsiniotis globular

 weak ω-categories
Globes and Globular Sets

- The category of globes \mathbb{G} :

$$
0 \underset{\tau}{\sigma} 1 \underset{\tau}{\rightrightarrows} 2 \underset{\tau}{\sigma} \cdots \quad \quad \sigma \sigma=\tau \sigma \quad \sigma \tau=\tau \tau
$$

Globes and Globular Sets

- The category of globes \mathbb{G} :

$$
0 \underset{\tau}{\sigma} 1 \underset{\tau}{\underset{\sigma}{\sigma}} 2 \underset{\tau}{\stackrel{\sigma}{\rightrightarrows}} \cdots \quad \quad \sigma \sigma=\tau \sigma \quad \sigma \tau=\tau \tau
$$

- Globular sets are presheaves on \mathbb{G} :

Globes and Globular Sets

- The category of globes \mathbb{G} :

$$
0 \underset{\tau}{\sigma} 1 \underset{\tau}{\underset{\tau}{\sigma}} 2 \underset{\tau}{\stackrel{\sigma}{\rightrightarrows}} \cdots \quad \quad \sigma \sigma=\tau \sigma \quad \sigma \tau=\tau \tau
$$

- Globular sets are presheaves on \mathbb{G} :

$$
X_{0} \underset{t}{\stackrel{s}{\leftrightarrows}} X_{1} \stackrel{s}{\overleftarrow{t}_{t}} X_{2} \underset{t}{\overleftarrow{s}^{s}} \cdots \quad \quad s s=s t \quad t s=t t
$$

Globes and Globular Sets

- The category of globes \mathbb{G} :

$$
0 \underset{\tau}{\sigma} 1 \underset{\tau}{\underset{\rightrightarrows}{\sigma}} 2 \underset{\tau}{\underset{\tau}{\rightrightarrows} \cdots} \quad \sigma \sigma=\tau \sigma \quad \sigma \tau=\tau \tau
$$

- Globular sets are presheaves on \mathbb{G} :

$$
X_{0} \underset{t}{\stackrel{s}{\leftrightarrows}} X_{1} \underset{t}{\overleftarrow{s}^{s}} X_{2} \underset{t}{\overleftarrow{s}^{s}} \cdots \quad \quad s s=s t \quad t s=t t
$$

- Disks are the representable presheaves

$$
D^{0}: \quad D^{1}: \longrightarrow \quad D^{2}: \xrightarrow{\Downarrow} \cdot D^{3}: \sqrt{\Downarrow} \| \sqrt{4} .
$$

Pasting Schemes/Globular Sums

- idea: Pasting schemes are the globular sets that should describe a unique composition.

Pasting Schemes/Globular Sums

- idea: Pasting schemes are the globular sets that should describe a unique composition.

Pasting Schemes/Globular Sums

- idea: Pasting schemes are the globular sets that should describe a unique composition.

- Formally, they are obtained as globular sums, i.e., limits of the following form

Source and Target of a Pasting Scheme

- Every pasting scheme P has a boundary ∂P : Formally replace every occurence of $\operatorname{dim} P$ in the globular sum with $\operatorname{dim} P-1$

Source and Target of a Pasting Scheme

- Every pasting scheme P has a boundary ∂P : Formally replace every occurence of $\operatorname{dim} P$ in the globular sum with $\operatorname{dim} P-1$
- There exists two maps, called source and target

$$
\partial_{P}^{-}, \partial_{P}^{+}: \partial P \rightarrow P
$$

Source and Target of a Pasting Scheme

- Every pasting scheme P has a boundary ∂P : Formally replace every occurence of $\operatorname{dim} P$ in the globular sum with $\operatorname{dim} P-1$
- There exists two maps, called source and target

$$
\partial_{P}^{-}, \partial_{P}^{+}: \partial P \rightarrow P
$$

Example

Source and Target of a Pasting Scheme

- Every pasting scheme P has a boundary ∂P : Formally replace every occurence of $\operatorname{dim} P$ in the globular sum with $\operatorname{dim} P-1$
- There exists two maps, called source and target

$$
\partial_{P}^{-}, \partial_{P}^{+}: \partial P \rightarrow P
$$

Example

$$
\partial_{P}^{-}
$$

P

Globular Theories

- Globular extension: a category \mathcal{C} equipped with a functor $\mathbb{G} \rightarrow \mathcal{C}$ such that \mathcal{C} has the globular sums.

Globular Theories

- Globular extension: a category \mathcal{C} equipped with a functor $\mathbb{G} \rightarrow \mathcal{C}$ such that \mathcal{C} has the globular sums.
- The initial globular extension: Θ_{0} Explicitly, Θ_{0} is the full subcategory of $\widehat{\mathbb{G}}$ whose objects are the pasting schemes.

Globular Theories

- Globular extension: a category \mathcal{C} equipped with a functor $\mathbb{G} \rightarrow \mathcal{C}$ such that \mathcal{C} has the globular sums.
- The initial globular extension: Θ_{0} Explicitly, Θ_{0} is the full subcategory of $\widehat{\mathbb{G}}$ whose objects are the pasting schemes.
- Globular theory: a globular extension \mathcal{C} such that the unique map $\Theta_{0} \rightarrow \mathcal{C}$ is faithful and identity on objects.
Intuition: a globular theory C contain pasting schemes with operations producing extra cells.

Globular Theories

- Globular extension: a category \mathcal{C} equipped with a functor $\mathbb{G} \rightarrow \mathcal{C}$ such that \mathcal{C} has the globular sums.
- The initial globular extension: Θ_{0} Explicitly, Θ_{0} is the full subcategory of $\widehat{\mathbb{G}}$ whose objects are the pasting schemes.
- Globular theory: a globular extension \mathcal{C} such that the unique map $\Theta_{0} \rightarrow \mathcal{C}$ is faithful and identity on objects.
Intuition: a globular theory C contain pasting schemes with operations producing extra cells.
- Reminder on Yoneda Lemma: cells in $P \leftrightarrow$ maps $D^{n} \rightarrow P$ in C

Coherator for Globular Weak ω-categories

- Given an object P in a globular theory \mathcal{C}, a cell x is algebraic, if there are no non-trivial map $f: Q \rightarrow P$ in Θ_{0} such that x is in the image of f. Intuition: All maps in Θ_{0} are monos \rightarrow algebraic $=$ "uses up" all the data in P.

Coherator for Globular Weak ω-categories

- Given an object P in a globular theory \mathcal{C}, a cell x is algebraic, if there are no non-trivial map $f: Q \rightarrow P$ in Θ_{0} such that x is in the image of f. Intuition: All maps in Θ_{0} are monos \rightarrow algebraic $=$ "uses up" all the data in P.
- A lift of a pair of parallel cells x, y of dimension n is a cell of dimension $n+1$ is a cell z such that $s(z)=x$ and $t(z)=y$.

Coherator for Globular Weak ω-categories

- Given an object P in a globular theory \mathcal{C}, a cell x is algebraic, if there are no non-trivial map $f: Q \rightarrow P$ in Θ_{0} such that x is in the image of f. Intuition: All maps in Θ_{0} are monos \rightarrow algebraic $=$ "uses up" all the data in P.
- A lift of a pair of parallel cells x, y of dimension n is a cell of dimension $n+1$ is a cell z such that $s(z)=x$ and $t(z)=y$.
- The coherator Θ_{∞} is the globular theory constructed as follows

$$
\Theta_{\infty}=\lim \left(\Theta_{0} \rightarrow \Theta_{1} \rightarrow \Theta_{2} \rightarrow \ldots\right)
$$

where Θ_{n+1} is formally obtained from Θ_{n} by universally adding a lift for every pair of cells (x, y) in P which either:

- write as $\left(\partial_{x}^{-}\left(x^{\prime}\right), \partial_{x}^{+}\left(y^{\prime}\right)\right)$ with x^{\prime}, y^{\prime} algebraic in ∂P
- are both algebraic in P
and for which a lift was not added at an earlier stage.

Weak ω-categories

- Weak ω-categories are presheaves over Θ_{∞} that preserve the globular sums.

Weak ω-categories

- Weak ω-categories are presheaves over Θ_{∞} that preserve the globular sums.
- Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.

Weak ω-categories

- Weak ω-categories are presheaves over Θ_{∞} that preserve the globular sums.
- Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.
- Adding a lift for every pair (x, y) that factor as $\partial_{X}^{-}\left(x^{\prime}\right), \partial_{X}^{+}\left(y^{\prime}\right)$, with x^{\prime}, y^{\prime} algebraic There exists a cell witnessing the composition of X from x to y
- Adding a lift for every pair (x, y) that are algebraic Any two compositions of X are related by a higher cell: weak uniqueness

Weak ω-categories

- Weak ω-categories are presheaves over Θ_{∞} that preserve the globular sums.
- Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.
- Adding a lift for every pair (x, y) that factor as $\partial_{x}^{-}\left(x^{\prime}\right), \partial_{X}^{+}\left(y^{\prime}\right)$, with x^{\prime}, y^{\prime} algebraic There exists a cell witnessing the composition of X from x to y
- Adding a lift for every pair (x, y) that are algebraic Any two compositions of X are related by a higher cell: weak uniqueness
- Existence + weak uniqueness related with contractibility in Topology/HoTT.

Identities, Compositions, Associators

We consider a weak ω-category X :

- A 0 -cell x defines a map $x: D^{0} \rightarrow X . D^{0}$ has a unique cell x^{\prime}, which is algebraic, hence the pair x^{\prime}, x^{\prime} has a lift $\operatorname{id}\left(x^{\prime}\right)$, which induces a 1-cell $\operatorname{id}(x): x \rightarrow x$ in X.

Identities, Compositions, Associators

We consider a weak ω-category X :

- A 0-cell x defines a map $x: D^{0} \rightarrow X . D^{0}$ has a unique cell x^{\prime}, which is algebraic, hence the pair x^{\prime}, x^{\prime} has a lift id $\left(x^{\prime}\right)$, which induces a 1-cell id $(x): x \rightarrow x$ in X.
- A diagram $x \xrightarrow{f} y \xrightarrow{g} z$ in X is an element of $X\left(D^{1} \sqcup_{D^{0}} D^{1} \sqcup_{D^{0}} D^{1}\right)$ (preservation of globular sums). $D^{1} \sqcup_{D^{0}} D^{1} \sqcup_{D^{0}} D^{1}$ is given by $x^{\prime} \xrightarrow{f^{\prime}} y^{\prime} \xrightarrow{g^{\prime}} z^{\prime}$, and x^{\prime} is algebraic in the source, z^{\prime} is algebraic in the target, so there exists a cell $f^{\prime} \star_{0} g^{\prime}: x^{\prime} \rightarrow z^{\prime}$, whose image in X is $f \star_{0} g: x \rightarrow z$

Identities, Compositions, Associators

We consider a weak ω-category X :

- A 0-cell x defines a map $x: D^{0} \rightarrow X . D^{0}$ has a unique cell x^{\prime}, which is algebraic, hence the pair x^{\prime}, x^{\prime} has a lift id $\left(x^{\prime}\right)$, which induces a 1-cell id $(x): x \rightarrow x$ in X.
- A diagram $x \xrightarrow{f} y \xrightarrow{g} z$ in X is an element of $X\left(D^{1} \sqcup_{D^{0}} D^{1} \sqcup_{D^{0}} D^{1}\right)$ (preservation of globular sums). $D^{1} \sqcup_{D^{0}} D^{1} \sqcup_{D^{0}} D^{1}$ is given by $x^{\prime} \xrightarrow{f^{\prime}} y^{\prime} \xrightarrow{g^{\prime}} z^{\prime}$, and x^{\prime} is algebraic in the source, z^{\prime} is algebraic in the target, so there exists a cell $f^{\prime} \star_{0} g^{\prime}: x^{\prime} \rightarrow z^{\prime}$, whose image in X is $f \star_{0} g: x \rightarrow z$
- $D^{1} \sqcup_{D^{0}} D^{1} \sqcup_{D^{0}} D^{1} \sqcup_{D^{0}} D^{1}$ is given by $x^{\prime} \xrightarrow{f^{\prime}} y^{\prime} \xrightarrow{g^{\prime}} z^{\prime} \xrightarrow{h^{\prime}} w^{\prime}$, by the previous point, $f^{\prime} \star_{0}\left(g^{\prime} \star_{0} h^{\prime}\right)$ and $\left(f^{\prime} \star_{0} g^{\prime}\right) \star_{0} h^{\prime}$ both exist, are parallel and are algebraic, hence there exists a cell $\alpha_{f^{\prime}, g^{\prime}, h^{\prime}}: f^{\prime} \star_{0}\left(g^{\prime} \star_{0} h^{\prime}\right) \rightarrow\left(f^{\prime} \star_{0} g^{\prime}\right) \star_{0} h^{\prime}$. For $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$ in X, this gives $\alpha_{f, g, h}: f \star_{0}\left(g \star_{0} h\right) \rightarrow\left(f \star_{0} g\right) \star_{0} h$

Coherator for semi-cubical weak ω-categories

Semi-Cubical Sets and Semi-Cubical Pasting Schemes

- The category of semi-cubes \square :

$$
0 \xrightarrow[\tau_{0}]{\sigma_{0}} 1 \begin{gathered}
-\sigma_{1} \rightarrow \\
1 \\
-\sigma_{0} \rightarrow \\
-\tau_{0} \rightarrow \\
-\tau_{1} \rightarrow \\
-\sigma_{0} \rightarrow \\
\hline
\end{gathered} \begin{gathered}
-\sigma_{2} \rightarrow \\
-\sigma_{0} \rightarrow \\
-\tau_{1} \rightarrow \\
-\tau_{2} \rightarrow
\end{gathered} \ldots . \quad \forall j<i, \begin{cases}\sigma_{j} \sigma_{i}=\sigma_{i+1} \sigma_{j} & \sigma_{j} \tau_{i}=\tau_{i+1} \sigma_{j} \\
\tau_{j} \sigma_{i}=\sigma_{i+1} \tau_{j} & \tau_{j} \tau_{i}=\tau_{i+1} \tau_{i}\end{cases}
$$

Semi-Cubical Sets and Semi-Cubical Pasting Schemes

- The category of semi-cubes \square :

$$
0 \underset{\tau_{0}}{\sigma_{0}} 1 \begin{array}{cc}
-\sigma_{1} \rightarrow & \begin{array}{c}
-\sigma_{2} \rightarrow \\
-\sigma_{1} \rightarrow \\
-\sigma_{0} \rightarrow
\end{array} \\
\hline-\sigma_{0} \rightarrow \\
-\tau_{1} \rightarrow & -\tau_{0} \rightarrow \\
-\tau_{1} \rightarrow
\end{array} \ldots . \quad \forall j<i, \begin{cases}\sigma_{j} \sigma_{i}=\sigma_{i+1} \sigma_{j} & \sigma_{j} \tau_{i}=\tau_{i+1} \sigma_{j} \\
\tau_{j} \sigma_{i}=\sigma_{i+1} \tau_{j} & \tau_{j} \tau_{i}=\tau_{i+1} \tau_{i}\end{cases}
$$

- Semi-cubical sets are presheaves on

$$
X_{0} \stackrel{s_{0}}{t_{0}} X_{1} \underset{\substack{\leftarrow s_{1}-\\ \leftarrow s_{0}-\\ \leftarrow t_{0}-}}{\leftarrow t_{1}-} \quad \forall j<i, \begin{cases}s_{i} s_{j}=s_{j} s_{i+1} & t_{i} s_{j}=s_{j} t_{i+1} \\ s_{i} t_{j}=t_{j} s_{i+1} & t_{i} t_{j}=t_{i} t_{i+1}\end{cases}
$$

Semi-Cubical Sets and Semi-Cubical Pasting Schemes

- The category of semi-cubes \square :

$$
0 \underset{\tau_{0}}{\sigma_{0}} 1 \begin{array}{cc}
-\sigma_{1} \rightarrow & \begin{array}{c}
-\sigma_{2} \rightarrow \\
-\sigma_{1} \rightarrow \\
-\sigma_{0} \rightarrow
\end{array} \\
\hline-\sigma_{0} \rightarrow \\
-\tau_{1} \rightarrow & -\tau_{0} \rightarrow \\
-\tau_{1} \rightarrow
\end{array} \ldots . \quad \forall j<i, \begin{cases}\sigma_{j} \sigma_{i}=\sigma_{i+1} \sigma_{j} & \sigma_{j} \tau_{i}=\tau_{i+1} \sigma_{j} \\
\tau_{j} \sigma_{i}=\sigma_{i+1} \tau_{j} & \tau_{j} \tau_{i}=\tau_{i+1} \tau_{i}\end{cases}
$$

- Semi-cubical sets are presheaves on \square

$$
X_{0} \underset{t_{0}}{\stackrel{s_{0}}{\leftrightarrows}} X_{1} \underset{\substack{s_{0}-\\ \leftarrow t_{0}=\\ \leftarrow t_{1}-}}{\stackrel{s_{1}}{5}} \quad \forall j<i, \begin{cases}s_{i} s_{j}=s_{j} s_{i+1} & t_{i} s_{j}=s_{j} t_{i+1} \\ s_{i} t_{j}=t_{j} s_{i+1} & t_{i} t_{j}=t_{i} t_{i+1}\end{cases}
$$

Semi-Cubes and Semi-Cubical Pasting Schemes

- The representable semi-cubical sets are the semi-cubes

Semi-Cubes and Semi-Cubical Pasting Schemes

- The representable semi-cubical sets are the semi-cubes

$$
C^{0} . \quad C^{1} \cdot \rightarrow \quad C^{2} \downarrow \xrightarrow{\Downarrow} \downarrow
$$

- Semi-cubical pasting schemes are rectangular grids Example:

$$
\begin{aligned}
& \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \\
& \stackrel{\downarrow}{\longrightarrow} \downarrow \downarrow \downarrow \downarrow \xrightarrow{\downarrow} \stackrel{\downarrow}{\longrightarrow} . \\
& \stackrel{\downarrow}{\longrightarrow} \downarrow \downarrow \downarrow \downarrow \xrightarrow{\downarrow} \stackrel{\downarrow}{\longrightarrow} .
\end{aligned}
$$

Semi-Cubes and Semi-Cubical Pasting Schemes

- The representable semi-cubical sets are the semi-cubes

$$
C^{0} . \quad C^{1} \cdot \rightarrow \quad C^{2} \downarrow \xrightarrow{\Downarrow} \downarrow
$$

- Semi-cubical pasting schemes are rectangular grids Example:

- A semi-cubical pasting scheme P of dimension n has n boundary $\partial_{i} P$, with maps $\partial_{i, P}^{-}, \partial_{i, P}^{+}: \partial_{i} P \rightarrow P$, for $0 \leq i<n$

Semi-Cubical Theories

- Define the cubical sums: diagrams for which pasting schemes are limits, and cubical extension: a category \mathcal{C} equipped with a functor $\square \rightarrow \mathcal{C}$ such that \mathcal{C} has the cubical sums, with the initial cubical extension Θ_{0}^{\square}

Semi-Cubical Theories

- Define the cubical sums: diagrams for which pasting schemes are limits, and cubical extension: a category \mathcal{C} equipped with a functor $\square \rightarrow \mathcal{C}$ such that \mathcal{C} has the cubical sums, with the initial cubical extension Θ_{0}^{\square}
- Cubical theory: a cubical extension \mathcal{C} such that the unique map $\Theta_{0}^{\square} \rightarrow \mathcal{C}$ is faithful and identity on objects.
Intuition: a cubical theory C contain pasting schemes with operations producing extra cells.

Semi-Cubical Theories

- Define the cubical sums: diagrams for which pasting schemes are limits, and cubical extension: a category \mathcal{C} equipped with a functor $\square \rightarrow \mathcal{C}$ such that \mathcal{C} has the cubical sums, with the initial cubical extension Θ_{0}^{\square}
- Cubical theory: a cubical extension \mathcal{C} such that the unique map $\Theta_{0}^{\square} \rightarrow \mathcal{C}$ is faithful and identity on objects.
Intuition: a cubical theory C contain pasting schemes with operations producing extra cells.
- A family of cells x_{1}, \ldots, x_{n} in an object P of a cubical theory are simultaneously algebraic if there are no non-trivial map $f: Q \rightarrow P$ in Θ_{0}^{\square} such that all the x_{i} are in the image of f.

Coherator for Semi-Cubical Weak ω-categories

- A family of cells $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ of dimension $n-1$ is compatible if the cells fit in the boundary of an n-cube. A lift of a family of compatible cells $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ of dimension $n-1$ is a cell z of dimension n is a cell z such that $s_{i}(z)=x_{i}$ and $t_{i}(z)=y_{i}$.

Coherator for Semi-Cubical Weak ω-categories

- A family of cells $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ of dimension $n-1$ is compatible if the cells fit in the boundary of an n-cube. A lift of a family of compatible cells $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ of dimension $n-1$ is a cell z of dimension n is a cell z such that $s_{i}(z)=x_{i}$ and $t_{i}(z)=y_{i}$.
- The coherator $\Theta_{\infty}^{\square}$ is the cubical theory constructed as follows

$$
\Theta_{\infty}^{\square}=\lim \left(\Theta_{0}^{\square} \rightarrow \Theta_{1}^{\square} \rightarrow \Theta_{2}^{\square} \rightarrow \ldots\right)
$$

where Θ_{n+1}^{\square} is formally obtained from Θ_{n}^{\square} by universally adding a lift for every compatible family of cells $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ in P, where either:

- we can decompose $x_{i}=\partial_{i, P}^{-}\left(x_{i}^{\prime}\right)$ and $y_{i}=\partial_{i, P}^{+}\left(y_{i}^{\prime}\right)$ with $x_{i}^{\prime}, y_{i}^{\prime}$ algebraic in $\partial_{i} P$
- both families $\left(x_{i}\right)$ and $\left(y_{i}\right)$ are algebraic in P and for which a lift was not added at an earlier stage.

Semi-Cubical Weak ω-categories and Operations

Semi-cubical weak ω-categories are presheaves over $\Theta_{\infty}^{\square}$ the preserve the cubical sums.

Semi-Cubical Weak ω-categories and Operations

Semi-cubical weak ω-categories are presheaves over $\Theta_{\infty}^{\square}$ the preserve the cubical sums.

Consider a cubical weak ω-category X :

- For every 0 -cell x, we can construct a 1 -cell $\operatorname{id}(x): x \rightarrow x$

Semi-Cubical Weak ω-categories and Operations

Semi-cubical weak ω-categories are presheaves over $\Theta_{\infty}^{\square}$ the preserve the cubical sums.

Consider a cubical weak ω-category X :

- For every 0 -cell x, we can construct a 1 -cell $\operatorname{id}(x): x \rightarrow x$
- For every diagram $x \xrightarrow{f} y \xrightarrow{g} z$, we can construct a 1 -cell $f \star_{0} g: x \rightarrow z$

Semi-Cubical Weak ω-categories and Operations

Semi-cubical weak ω-categories are presheaves over $\Theta_{\infty}^{\square}$ the preserve the cubical sums.

Consider a cubical weak ω-category X :

- For every 0 -cell x, we can construct a 1 -cell $\operatorname{id}(x): x \rightarrow x$
- For every diagram $x \xrightarrow{f} y \xrightarrow{g} z$, we can construct a 1 -cell $f \star_{0} g: x \rightarrow z$

Interchange

Interchange

$$
\begin{array}{rc}
x \xrightarrow{f} & y \\
h \downarrow \\
\Downarrow_{\alpha} & \downarrow k
\end{array} \quad x \xrightarrow{f} y
$$

- For every diagram $\quad x^{\prime}-f^{\prime} \rightarrow y^{\prime}$, we have a 2-cell $h \not{ }_{\neq 0} h^{\prime} \downarrow \Downarrow_{\alpha \star_{1} \alpha^{\prime}} \downarrow k \star_{0} k^{\prime}$

$$
h^{\prime} \downarrow \Downarrow_{\alpha^{\prime}} \underset{k^{\prime}}{\downarrow k^{\prime}} \quad x^{\prime \prime} \xrightarrow[f^{\prime \prime}]{\longrightarrow} y^{\prime \prime}
$$

 $x^{\prime} \xrightarrow[f^{\prime}]{ } y^{\prime} \xrightarrow[g^{\prime}]{ } z^{\prime} \quad x^{\prime} \xrightarrow[f^{\prime} \times 0 g]{ } z^{\prime}$

Interchange

$$
\begin{aligned}
& x \xrightarrow{x} y \\
& h \downarrow \\
& \Downarrow_{\alpha} \downarrow k
\end{aligned} \quad x \xrightarrow{f} y
$$

- For every diagram $\quad x^{\prime}-f^{\prime} \rightarrow y^{\prime}$, we have a 2-cell $h \star_{0} h^{\prime} \downarrow \Downarrow_{\alpha \star_{1} \alpha^{\prime}} \downarrow k \star_{0} k^{\prime}$

$$
\stackrel{h^{\prime} \downarrow \stackrel{x^{\prime}}{x^{\prime \prime}} \xrightarrow[f^{\prime \prime}]{\downarrow} y^{\prime \prime}}{\substack{ \\k^{\prime}}}
$$

 $x^{\prime} \xrightarrow[f^{\prime}]{\longrightarrow} y^{\prime} \xrightarrow[g^{\prime}]{ } z^{\prime} \quad x^{\prime} \xrightarrow[f^{\prime} \star 0 g]{ } z^{\prime}$
$x \xrightarrow{f} y \xrightarrow{g} z$
$h \downarrow \quad \Downarrow_{\alpha} \quad k \quad \Downarrow_{\beta} \quad \downarrow \prime$
$-x^{\prime}-f^{\prime} \rightarrow y^{\prime}-g^{\prime} \rightarrow z^{\prime} \quad$ gives $\left(\alpha \star_{1} \alpha^{\prime}\right) \star_{0}\left(\beta \star_{1} \beta^{\prime}\right) \Rightarrow\left(\alpha \star_{0} \beta\right) \star_{1}\left(\alpha^{\prime} \star_{0} \beta^{\prime}\right)$
$h^{\prime} \downarrow \quad \Downarrow_{\alpha^{\prime}} \quad k^{\prime} \quad \Downarrow_{\beta^{\prime}} \quad \downarrow^{\prime}$
$x^{\prime \prime} \xrightarrow[f^{\prime \prime}]{ } y^{\prime \prime} \xrightarrow[g^{\prime \prime}]{ } z^{\prime \prime}$

Interesting Note on Weak Degeneracies

For every 1-cell $x \xrightarrow{f} y$, one can construct two identity 2-cells

$$
\begin{aligned}
& x \xrightarrow{\mathrm{id}(x)} x \\
& \text { - } f \downarrow \Downarrow_{\text {ido }_{0}(f)} \downarrow f \\
& y \xrightarrow[i d(y)]{ } y
\end{aligned}
$$

Interesting Note on Weak Degeneracies

For every 1-cell $x \xrightarrow{f} y$, one can construct two identity 2-cells

$$
\begin{aligned}
& \begin{array}{c}
x \xrightarrow{f} y \\
\qquad \operatorname{id}(x) \mid \Downarrow_{\mathrm{id}_{1}(f)} \\
\underset{f}{\downarrow} y
\end{array} \\
& x \xrightarrow{\mathrm{id}(x)} x
\end{aligned}
$$

$\operatorname{id}_{1}(\mathrm{id}(x))$ and $\mathrm{id}_{0}(\mathrm{id}(x))$ have the same type, and are equivalent, but not strictly equal!

Thank you!

