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Introduction (I)

▶ Higher categories may come in different flavours

today

• existence of cells up to a certain level

ω

• strict vs. weak

weak

• various basic shapes: globes, simplices, cubes, opetopes, . . .

globes/cubes

▶ Globular weak ω-categories
• Batanin-Leinster: Algebras for the initial globular operad with contraction.
• Maltsiniotis (after Grothendieck): Defined by a coherator.
• Ara (a bit of help from Bourke): The Grothendieck-Maltsiniotis definition can

specialize to the Batanin-Leinster one.
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Introduction (II)

▶ Aim: Define a coherator for semi-cubical weak ω-categories à la
Grothendieck-Maltsiniotis (WIP).

• weak ω-categories based on the category of semi-cubes
• Unpublished work I did during my PhD (circa. 2019/2020)
• Please give me your feedback

▶ Cubical weak ω-categories
• Kachour: weak ω-categories on reflexive cubes à la Batanin-Leinster, but newer

publications getting closer to the Grothendieck-Maltsiniotis style.
• Grandis: cubical categories with symmetries.
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Grothendieck-Maltsiniotis globular
weak ω-categories



Globes and Globular Sets

▶ The category of globes G:

0 1 2 . . .
σ

τ

σ

τ

σ

τ
σσ = τσ στ = ττ

▶ Globular sets are presheaves on G:

X0 X1 X2 . . .
s

t

s

t

s

t
ss = st ts = tt

x y z w

f

f ′

⇓α h

l
k

▶ Disks are the representable presheaves

D0 : · D1 : · · D2 : · ·⇓ D3 : · ·⇓⇛⇓ . . .
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Pasting Schemes/Globular Sums

▶ idea: Pasting schemes are the globular sets that should describe a unique
composition.

examples counter-examples

· · · · · ·⇓
⇓ · ·

⇓
⇓

·

▶ Formally, they are obtained as globular sums, i.e., limits of the following form

D i1 D i2 . . . D ik

D j1 D j2 . . . D jk−1
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Source and Target of a Pasting Scheme

▶ Every pasting scheme P has a boundary ∂P : Formally replace every occurence of
dimP in the globular sum with dimP − 1

▶ There exists two maps, called source and target

∂−
P , ∂

+
P : ∂P → P

Example

P · · · · · · ∂P
⇓
⇓

∂+
P

∂−
P
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Globular Theories

▶ Globular extension: a category C equipped with a functor G → C such that C has
the globular sums.

▶ The initial globular extension: Θ0

Explicitly, Θ0 is the full subcategory of Ĝ whose objects are the pasting schemes.

▶ Globular theory: a globular extension C such that the unique map Θ0 → C is
faithful and identity on objects.
Intuition: a globular theory C contain pasting schemes with operations producing
extra cells.

▶ Reminder on Yoneda Lemma: cells in P ↭ maps Dn → P in C

7
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Coherator for Globular Weak ω-categories

▶ Given an object P in a globular theory C, a cell x is algebraic, if there are no
non-trivial map f : Q → P in Θ0 such that x is in the image of f .
Intuition: All maps in Θ0 are monos → algebraic = “uses up” all the data in P .

▶ A lift of a pair of parallel cells x , y of dimension n is a cell of dimension n + 1 is a
cell z such that s(z) = x and t(z) = y .

▶ The coherator Θ∞ is the globular theory constructed as follows

Θ∞ = lim(Θ0 → Θ1 → Θ2 → . . .)

where Θn+1 is formally obtained from Θn by universally adding a lift for every pair
of cells (x , y) in P which either:

• write as (∂−
X (x ′), ∂+

X (y
′)) with x ′, y ′ algebraic in ∂P

• are both algebraic in P

and for which a lift was not added at an earlier stage.
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Weak ω-categories

▶ Weak ω-categories are presheaves over Θ∞ that preserve the globular sums.

▶ Interpretation: Recall that pasting schemes should represent an (essentially) unique
way of composing.

• Adding a lift for every pair (x , y) that factor as ∂−
X (x ′), ∂+

X (y
′), with x ′, y ′ algebraic

There exists a cell witnessing the composition of X from x to y

• Adding a lift for every pair (x , y) that are algebraic
Any two compositions of X are related by a higher cell: weak uniqueness

▶ Existence + weak uniqueness related with contractibility in Topology/HoTT.

9
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Identities, Compositions, Associators

We consider a weak ω-category X :

▶ A 0-cell x defines a map x : D0 → X . D0 has a unique cell x ′, which is algebraic,
hence the pair x ′, x ′ has a lift id(x ′), which induces a 1-cell id(x) : x → x in X .

▶ A diagram x
f−→ y

g−→ z in X is an element of X (D1 ⊔D0 D1 ⊔D0 D1) (preservation

of globular sums). D1 ⊔D0 D1 ⊔D0 D1 is given by x ′
f ′−→ y ′

g ′
−→ z ′, and x ′ is

algebraic in the source, z ′ is algebraic in the target, so there exists a cell
f ′ ⋆0 g

′ : x ′ → z ′, whose image in X is f ⋆0 g : x → z

▶ D1 ⊔D0 D1 ⊔D0 D1 ⊔D0 D1 is given by x ′
f ′−→ y ′

g ′
−→ z ′

h′−→ w ′, by the previous
point, f ′ ⋆0 (g

′ ⋆0 h
′) and (f ′ ⋆0 g

′) ⋆0 h
′ both exist, are parallel and are algebraic,

hence there exists a cell αf ′,g ′,h′ : f
′ ⋆0 (g

′ ⋆0 h
′) → (f ′ ⋆0 g

′) ⋆0 h
′. For

x
f−→ y

g−→ z
h−→ w in X , this gives αf ,g ,h : f ⋆0 (g ⋆0 h) → (f ⋆0 g) ⋆0 h

10



Identities, Compositions, Associators

We consider a weak ω-category X :

▶ A 0-cell x defines a map x : D0 → X . D0 has a unique cell x ′, which is algebraic,
hence the pair x ′, x ′ has a lift id(x ′), which induces a 1-cell id(x) : x → x in X .

▶ A diagram x
f−→ y

g−→ z in X is an element of X (D1 ⊔D0 D1 ⊔D0 D1) (preservation

of globular sums). D1 ⊔D0 D1 ⊔D0 D1 is given by x ′
f ′−→ y ′

g ′
−→ z ′, and x ′ is

algebraic in the source, z ′ is algebraic in the target, so there exists a cell
f ′ ⋆0 g

′ : x ′ → z ′, whose image in X is f ⋆0 g : x → z

▶ D1 ⊔D0 D1 ⊔D0 D1 ⊔D0 D1 is given by x ′
f ′−→ y ′

g ′
−→ z ′

h′−→ w ′, by the previous
point, f ′ ⋆0 (g

′ ⋆0 h
′) and (f ′ ⋆0 g

′) ⋆0 h
′ both exist, are parallel and are algebraic,

hence there exists a cell αf ′,g ′,h′ : f
′ ⋆0 (g

′ ⋆0 h
′) → (f ′ ⋆0 g

′) ⋆0 h
′. For

x
f−→ y

g−→ z
h−→ w in X , this gives αf ,g ,h : f ⋆0 (g ⋆0 h) → (f ⋆0 g) ⋆0 h

10



Identities, Compositions, Associators

We consider a weak ω-category X :

▶ A 0-cell x defines a map x : D0 → X . D0 has a unique cell x ′, which is algebraic,
hence the pair x ′, x ′ has a lift id(x ′), which induces a 1-cell id(x) : x → x in X .

▶ A diagram x
f−→ y

g−→ z in X is an element of X (D1 ⊔D0 D1 ⊔D0 D1) (preservation

of globular sums). D1 ⊔D0 D1 ⊔D0 D1 is given by x ′
f ′−→ y ′

g ′
−→ z ′, and x ′ is

algebraic in the source, z ′ is algebraic in the target, so there exists a cell
f ′ ⋆0 g

′ : x ′ → z ′, whose image in X is f ⋆0 g : x → z

▶ D1 ⊔D0 D1 ⊔D0 D1 ⊔D0 D1 is given by x ′
f ′−→ y ′

g ′
−→ z ′

h′−→ w ′, by the previous
point, f ′ ⋆0 (g

′ ⋆0 h
′) and (f ′ ⋆0 g

′) ⋆0 h
′ both exist, are parallel and are algebraic,

hence there exists a cell αf ′,g ′,h′ : f
′ ⋆0 (g

′ ⋆0 h
′) → (f ′ ⋆0 g

′) ⋆0 h
′. For

x
f−→ y

g−→ z
h−→ w in X , this gives αf ,g ,h : f ⋆0 (g ⋆0 h) → (f ⋆0 g) ⋆0 h 10



Coherator for semi-cubical weak
ω-categories



Semi-Cubical Sets and Semi-Cubical Pasting Schemes

▶ The category of semi-cubes □:

0 1 2 . . .
σ0

τ0

σ0
τ0

σ1

τ1

σ0
τ0

σ1

τ1

σ2

τ2

∀j < i ,

σjσi = σi+1σj σjτi = τi+1σj

τjσi = σi+1τj τjτi = τi+1τi

▶ Semi-cubical sets are presheaves on □:

X0 X1 . . .
s0

t0

s0
t0

s1

t1

∀j < i ,

si sj = sjsi+1 ti sj = sj ti+1

si tj = tjsi+1 ti tj = ti ti+1

· · ·

· · · ·
⇓
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Semi-Cubes and Semi-Cubical Pasting Schemes

▶ The representable semi-cubical sets are the semi-cubes

C 0 · C 1 · → · C 2
· ·

· ·
⇓ C 3

· ·
· ·

· ·
· ·

⇛

▶ Semi-cubical pasting schemes are rectangular grids
Example:

· · · ·

· · · ·

· · · ·

⇓ ⇓ ⇓

⇓ ⇓ ⇓

▶ A semi-cubical pasting scheme P of dimension n has n boundary ∂iP , with maps
∂−
i ,P , ∂

+
i ,P : ∂iP → P , for 0 ≤ i < n

12
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Semi-Cubical Theories

▶ Define the cubical sums: diagrams for which pasting schemes are limits, and
cubical extension: a category C equipped with a functor □ → C such that C has
the cubical sums, with the initial cubical extension Θ□

0

▶ Cubical theory: a cubical extension C such that the unique map Θ□
0 → C is faithful

and identity on objects.
Intuition: a cubical theory C contain pasting schemes with operations producing
extra cells.

▶ A family of cells x1, . . . , xn in an object P of a cubical theory are simultaneously
algebraic if there are no non-trivial map f : Q → P in Θ□

0 such that all the xi are
in the image of f .

13



Semi-Cubical Theories

▶ Define the cubical sums: diagrams for which pasting schemes are limits, and
cubical extension: a category C equipped with a functor □ → C such that C has
the cubical sums, with the initial cubical extension Θ□

0

▶ Cubical theory: a cubical extension C such that the unique map Θ□
0 → C is faithful

and identity on objects.
Intuition: a cubical theory C contain pasting schemes with operations producing
extra cells.

▶ A family of cells x1, . . . , xn in an object P of a cubical theory are simultaneously
algebraic if there are no non-trivial map f : Q → P in Θ□

0 such that all the xi are
in the image of f .

13



Semi-Cubical Theories

▶ Define the cubical sums: diagrams for which pasting schemes are limits, and
cubical extension: a category C equipped with a functor □ → C such that C has
the cubical sums, with the initial cubical extension Θ□

0

▶ Cubical theory: a cubical extension C such that the unique map Θ□
0 → C is faithful

and identity on objects.
Intuition: a cubical theory C contain pasting schemes with operations producing
extra cells.

▶ A family of cells x1, . . . , xn in an object P of a cubical theory are simultaneously
algebraic if there are no non-trivial map f : Q → P in Θ□

0 such that all the xi are
in the image of f .

13



Coherator for Semi-Cubical Weak ω-categories

▶ A family of cells (x1, . . . , xn, y1, . . . , yn) of dimension n − 1 is compatible if the
cells fit in the boundary of an n-cube. A lift of a family of compatible cells
x1, . . . , xn, y1, . . . , yn of dimension n − 1 is a cell z of dimension n is a cell z such
that si (z) = xi and ti (z) = yi .

▶ The coherator Θ□
∞ is the cubical theory constructed as follows

Θ□
∞ = lim(Θ□

0 → Θ□
1 → Θ□

2 → . . .)

where Θ□
n+1 is formally obtained from Θ□

n by universally adding a lift for every
compatible family of cells (x1, . . . , xn, y1, . . . , yn) in P , where either:

• we can decompose xi = ∂−
i,P(x

′
i ) and yi = ∂+

i,P(y
′
i ) with x ′i , y

′
i algebraic in ∂iP

• both families (xi ) and (yi ) are algebraic in P

and for which a lift was not added at an earlier stage.
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Semi-Cubical Weak ω-categories and Operations

Semi-cubical weak ω-categories are presheaves over Θ□
∞ the preserve the cubical sums.

Consider a cubical weak ω-category X :

▶ For every 0-cell x , we can construct a 1-cell id(x) : x → x

▶ For every diagram x
f−→ y

g−→ z , we can construct a 1-cell f ⋆0 g : x → z

▶ For every diagram x
f−→ y

g−→ z
h−→ w , we can construct a 2-cell

x z

y w

f ⋆0g

f ⇓αf ,g,h h

g⋆0h
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Interchange

▶ For every diagram

x y

x ′ y ′

x ′′ y ′′

f

h ⇓α k

f ′

h′ ⇓α′ k ′

f ′′

, we have a 2-cell
x y

x ′′ y ′′

f

h⋆0h′ ⇓α⋆1α′ k⋆0k ′

f ′′

▶ For every diagram
x y z

x ′ y ′ z ′

f

h ⇓α

g

k ⇓β l

f ′ g ′

, we have a 2-cell
x z

x ′ z ′

f ⋆0g

h ⇓α⋆0β l

f ′⋆0g ′

▶

x y z

x ′ y ′ z ′

x ′′ y ′′ z ′′

f

h ⇓α

g

k ⇓β l

f ′

h′ ⇓α′

g ′

k ′ ⇓β′ l ′

f ′′ g ′′

gives (α ⋆1 α
′) ⋆0 (β ⋆1 β

′) ⇛ (α ⋆0 β) ⋆1 (α
′ ⋆0 β

′)
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Interesting Note on Weak Degeneracies

For every 1-cell x f−→ y , one can construct two identity 2-cells

▶

x y

x y

f

id(x) ⇓id1(f ) id(y)

f

▶

x x

y y

id(x)

f ⇓id0(f ) f

id(y)

id1(id(x)) and id0(id(x)) have the same type, and are equivalent, but not strictly equal!
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Thank you!
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