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. HoTT, but stripped off of everything except identities

. So a context looks like :
(x:*, y:*, z:*, f:x=y, f’:x=y, g:z=y, a:f=f’)

. These contexts describe arbitrary equality situations (a.k.a
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x y z

f

f ′

=a g



Brunerie’s Type Theory

. HoTT, but stripped off of everything except identities

. So a context looks like :
(x:*, y:*, z:*, f:x=y, f’:x=y, g:z=y, a:f=f’)

. These contexts describe arbitrary equality situations (a.k.a
computads for weak ω-groupoids)

x y z

f

f ′

=a g



Brunerie’s Type Theory

. HoTT, but stripped off of everything except identities

. So a context looks like :
(x:*, y:*, z:*, f:x=y, f’:x=y, g:z=y, a:f=f’)

. These contexts describe arbitrary equality situations (a.k.a
computads for weak ω-groupoids)

x y z

f

f ′

=a g



Compositions
. In HoTT, identity types have recursors that allows to combine

them.
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for that.

. This allows for instance to derive the terms
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` a(f,g,h) : c(f,c(g,h))=c(c(f,g),h)
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General Idea

. Same as Brunerie’s Type Theory, but for weak ω-categories
Replace equalities with rewriting relations

. Contexts are arbitrary rewriting situations (a.k.a computads for
weak ω-categories)

. Define compositions and axioms for those.
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Pasting schemes
. Pasting schemes are the context that describe essentially a

single unambiguous rewriting situation.

. Example :

• • • • • •⇓
⇓

. Counter-example :

• • • •⇓
⇓

. We can recognize them algorithmically
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. First rule (operations) :
Every pasting scheme has a composition

. Second rule (axioms) :
Any two compositions of the same pasting scheme are related
by a higher cell.

. Let’s see this live !
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