
CaTT: A type theory for weak ω-categories

Thibaut Benjamin

CEA LIST, work conducted at Ecole Polytechnique

HoTTEST Event for Junior Researchers
January 13, 2022



Introduction

. I will present the type theory CaTT, introduced by Finster and
Mimram.

. I have conducted my PhD thesis about this theory.

. I am currently a postdoc at CEA LIST, where I work on
runtime verification of C programs (in frama-c).



Introduction

. I will present the type theory CaTT, introduced by Finster and
Mimram.

. I have conducted my PhD thesis about this theory.

. I am currently a postdoc at CEA LIST, where I work on
runtime verification of C programs (in frama-c).



Introduction

. I will present the type theory CaTT, introduced by Finster and
Mimram.

. I have conducted my PhD thesis about this theory.

. I am currently a postdoc at CEA LIST, where I work on
runtime verification of C programs (in frama-c).



HoTT, Groupoids, and Brunerie’s Type Theory



HoTT and ω-Groupoids

. The iterated identity types endow types with a structure of a
weak ω-groupoid.

. But we can abstract out this structure and define it as a
minimal type theory (Brunerie)



HoTT and ω-Groupoids

. The iterated identity types endow types with a structure of a
weak ω-groupoid.

. But we can abstract out this structure and define it as a
minimal type theory (Brunerie)



Brunerie’s Type Theory

. HoTT, but stripped off of everything except identities

. So a context looks like :
(x:*, y:*, z:*, f:x=y, f’:x=y, g:z=y, a:f=f’)

. These contexts describe arbitrary equality situations (a.k.a
computads for weak ω-groupoids)

x y z

f

f ′

=a g



Brunerie’s Type Theory

. HoTT, but stripped off of everything except identities

. So a context looks like :
(x:*, y:*, z:*, f:x=y, f’:x=y, g:z=y, a:f=f’)

. These contexts describe arbitrary equality situations (a.k.a
computads for weak ω-groupoids)

x y z

f

f ′

=a g



Brunerie’s Type Theory

. HoTT, but stripped off of everything except identities

. So a context looks like :
(x:*, y:*, z:*, f:x=y, f’:x=y, g:z=y, a:f=f’)

. These contexts describe arbitrary equality situations (a.k.a
computads for weak ω-groupoids)

x y z

f

f ′

=a g



Compositions
. In HoTT, identity types have recursors that allows to combine

them.

. In Brunerie’s Type Theory, we define compositions and axioms
for that.

. This allows for instance to derive the terms
(x:*, y:*, z:*, f:x=y, g:y=z) ` c(f,g) : x=z

x y zf g

(x:*, y:*, z:*, w:*, f:x=y, g:y=z, h:z=w)
` a(f,g,h) : c(f,c(g,h))=c(c(f,g),h)

x y z wf g h



Compositions
. In HoTT, identity types have recursors that allows to combine

them.

. In Brunerie’s Type Theory, we define compositions and axioms
for that.

. This allows for instance to derive the terms
(x:*, y:*, z:*, f:x=y, g:y=z) ` c(f,g) : x=z

x y zf g

(x:*, y:*, z:*, w:*, f:x=y, g:y=z, h:z=w)
` a(f,g,h) : c(f,c(g,h))=c(c(f,g),h)

x y z wf g h



Compositions
. In HoTT, identity types have recursors that allows to combine

them.

. In Brunerie’s Type Theory, we define compositions and axioms
for that.

. This allows for instance to derive the terms
(x:*, y:*, z:*, f:x=y, g:y=z) ` c(f,g) : x=z

x y zf g

(x:*, y:*, z:*, w:*, f:x=y, g:y=z, h:z=w)
` a(f,g,h) : c(f,c(g,h))=c(c(f,g),h)

x y z wf g h



Compositions
. In HoTT, identity types have recursors that allows to combine

them.

. In Brunerie’s Type Theory, we define compositions and axioms
for that.

. This allows for instance to derive the terms
(x:*, y:*, z:*, f:x=y, g:y=z) ` c(f,g) : x=z

x y zf g

(x:*, y:*, z:*, w:*, f:x=y, g:y=z, h:z=w)
` a(f,g,h) : c(f,c(g,h))=c(c(f,g),h)

x y z wf g h



CaTT : A Type Theory for Weak ω-Categories



General Idea

. Same as Brunerie’s Type Theory, but for weak ω-categories
Replace equalities with rewriting relations

. Contexts are arbitrary rewriting situations (a.k.a computads for
weak ω-categories)

. Define compositions and axioms for those.



General Idea

. Same as Brunerie’s Type Theory, but for weak ω-categories
Replace equalities with rewriting relations

. Contexts are arbitrary rewriting situations (a.k.a computads for
weak ω-categories)

. Define compositions and axioms for those.



General Idea

. Same as Brunerie’s Type Theory, but for weak ω-categories
Replace equalities with rewriting relations

. Contexts are arbitrary rewriting situations (a.k.a computads for
weak ω-categories)

. Define compositions and axioms for those.



Arbitrary rewriting situations
. Like in Brunerie’s Type Theory, but replace equalities with

arrows

. Example :
(x:*, y:*, z:*, f:x->y, f’:x->y, g:z->y, a:f->f’)

. This context corresponds to the following diagram (globular
set)

x y z

f

f ′

⇓a g

. We will see more general contexts later



Arbitrary rewriting situations
. Like in Brunerie’s Type Theory, but replace equalities with

arrows

. Example :
(x:*, y:*, z:*, f:x->y, f’:x->y, g:z->y, a:f->f’)

. This context corresponds to the following diagram (globular
set)

x y z

f

f ′

⇓a g

. We will see more general contexts later



Arbitrary rewriting situations
. Like in Brunerie’s Type Theory, but replace equalities with

arrows

. Example :
(x:*, y:*, z:*, f:x->y, f’:x->y, g:z->y, a:f->f’)

. This context corresponds to the following diagram (globular
set)

x y z

f

f ′

⇓a g

. We will see more general contexts later



Arbitrary rewriting situations
. Like in Brunerie’s Type Theory, but replace equalities with

arrows

. Example :
(x:*, y:*, z:*, f:x->y, f’:x->y, g:z->y, a:f->f’)

. This context corresponds to the following diagram (globular
set)

x y z

f

f ′

⇓a g

. We will see more general contexts later



Pasting schemes
. Pasting schemes are the context that describe essentially a

single unambiguous rewriting situation.

. Example :

• • • • • •⇓
⇓

. Counter-example :

• • • •⇓
⇓

. We can recognize them algorithmically



Pasting schemes
. Pasting schemes are the context that describe essentially a

single unambiguous rewriting situation.

. Example :

• • • • • •⇓
⇓

. Counter-example :

• • • •⇓
⇓

. We can recognize them algorithmically



Pasting schemes
. Pasting schemes are the context that describe essentially a

single unambiguous rewriting situation.

. Example :

• • • • • •⇓
⇓

. Counter-example :

• • • •⇓
⇓

. We can recognize them algorithmically



Pasting schemes
. Pasting schemes are the context that describe essentially a

single unambiguous rewriting situation.

. Example :

• • • • • •⇓
⇓

. Counter-example :

• • • •⇓
⇓

. We can recognize them algorithmically



Composition in CaTT

. Composition express the idea that the space of composite of a
pasting schemes is contractible.

. First rule (operations) :
Every pasting scheme has a composition

. Second rule (axioms) :
Any two compositions of the same pasting scheme are related
by a higher cell.

. Let’s see this live !



Composition in CaTT

. Composition express the idea that the space of composite of a
pasting schemes is contractible.

. First rule (operations) :
Every pasting scheme has a composition

. Second rule (axioms) :
Any two compositions of the same pasting scheme are related
by a higher cell.

. Let’s see this live !



Composition in CaTT

. Composition express the idea that the space of composite of a
pasting schemes is contractible.

. First rule (operations) :
Every pasting scheme has a composition

. Second rule (axioms) :
Any two compositions of the same pasting scheme are related
by a higher cell.

. Let’s see this live !



Composition in CaTT

. Composition express the idea that the space of composite of a
pasting schemes is contractible.

. First rule (operations) :
Every pasting scheme has a composition

. Second rule (axioms) :
Any two compositions of the same pasting scheme are related
by a higher cell.

. Let’s see this live !


	HoTT, Groupoids, and Brunerie's Type Theory
	CaTT: A Type Theory for Weak -Categories

