Weak ω-categories as models of a type theory

Thibaut Benjamin

CEA LIST
Logic and higher structures
CIRM, February 23, 2022

Dependent type theories and higher structures

HoTT and weak ω-groupoids

\triangleright In HoTT every type has associated tower of identity type

HoTT and weak ω-groupoids

\triangleright In HoTT every type has associated tower of identity type
\triangleright The iterated identity types have the structure of an ω-groupoid

HoTT and weak ω-groupoids

\triangleright In HoTT every type has associated tower of identity type
\triangleright The iterated identity types have the structure of an ω-groupoid
\triangleright This suggest a link between dependent type theories and higher structures.

Brunerie's type theory

\triangleright A minimal dependent type theory to describe weak ω-groupoids, introduced by Brunerie [2]

Brunerie's type theory

\triangleright A minimal dependent type theory to describe weak ω-groupoids, introduced by Brunerie [2]
\triangleright Types : encode the higher dimensional disks (same dependency as in HoTT)

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t=A u}
$$

Brunerie's type theory

\triangleright A minimal dependent type theory to describe weak ω-groupoids, introduced by Brunerie [2]
\triangleright Types : encode the higher dimensional disks (same dependency as in HoTT)

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t=A u}
$$

In this type theory, the identity types are not inductive, instead there is a family of term constructors that witnesses the algebraic structure.

DTT and higher structures

The correspondence between dependent type theories and higher algebraic structure follows the principle

> type dependency \rightsquigarrow higher dimensional shapes
> term constructors \rightsquigarrow algebraic structure

Weak ω-categories

An Overview

Weak ω-categories are higher structure with directed arrows in all levels
$\omega \neq \infty$, Lurie uses " ∞-categories" for $(\infty, 1)$ - categories.

An Overview

Weak ω-categories are higher structure with directed arrows in all levels
$\omega \neq \infty$, Lurie uses " ∞-categories" for $(\infty, 1)$ - categories.

Several definitions, among which some globular ones are
\triangleright Batanin-Leinster [6] :Algebras for the initial globular operad with contractions.

An Overview

Weak ω-categories are higher structure with directed arrows in all levels
$\omega \neq \infty$, Lurie uses " ∞-categories" for $(\infty, 1)$ - categories.
Several definitions, among which some globular ones are
\triangleright Batanin-Leinster [6] :Algebras for the initial globular operad with contractions.
\triangleright Grothendieck-Maltsiniotis (G.-M.) [7] :Presheaves over the category Θ_{∞} which preserve globular sums.

An Overview

Weak ω-categories are higher structure with directed arrows in all levels
$\omega \neq \infty$, Lurie uses " ∞-categories" for $(\infty, 1)$ - categories.
Several definitions, among which some globular ones are
\triangleright Batanin-Leinster [6] :Algebras for the initial globular operad with contractions.
\triangleright Grothendieck-Maltsiniotis (G.-M.) [7] :Presheaves over the category Θ_{∞} which preserve globular sums.

Lots of other definitions, with other shapes.

Weak ω-categories

The Grothendieck-Maltsiniotis definition

A bit of context

\triangleright Originally proposed by Grothendieck for weak ω-groupoids [5]. Brunerie has proved that his type theory describes exactly Grothendieck's weak ω-groupoids

A bit of context

\triangleright Originally proposed by Grothendieck for weak ω-groupoids [5]. Brunerie has proved that his type theory describes exactly Grothendieck's weak ω-groupoids
\triangleright Extended by Maltsiniotis to weak ω-categories [7] Intuition : enforce a privileged direction on the rules

A bit of context

\triangleright Originally proposed by Grothendieck for weak ω-groupoids [5]. Brunerie has proved that his type theory describes exactly Grothendieck's weak ω-groupoids
\triangleright Extended by Maltsiniotis to weak ω-categories [7] Intuition : enforce a privileged direction on the rules
\triangleright Proven equivalent to Batanin-Leinster definition by Ara [1]

A globular definition

\triangleright Supported by globular sets

A globular definition

\triangleright Supported by globular sets

\triangleright Presheaf category whose representables are disks

Pasting schemes

Pasting schemes are globular sets that represent a "unique" composition in ω-categories.

Pasting schemes

Pasting schemes are globular sets that represent a "unique" composition in ω-categories.

\triangleright They are well ordered and without holes
Examples:
$\bullet \longrightarrow$ -

Pasting schemes

Pasting schemes are globular sets that represent a "unique" composition in ω-categories.

\triangleright They are well ordered and without holes

Pasting schemes

Pasting schemes are globular sets that represent a "unique" composition in ω-categories.

\triangleright They are well ordered and without holes

Examples:

Pasting schemes

Pasting schemes are globular sets that represent a "unique" composition in ω-categories.

\triangleright They are well ordered and without holes

Examples:

Counter-examples :
-

Pasting schemes

Pasting schemes are globular sets that represent a "unique" composition in ω-categories.

\triangleright They are well ordered and without holes

Examples:

Counter-examples :

Pasting schemes

Pasting schemes are globular sets that represent a "unique" composition in ω-categories.

\triangleright They are well ordered and without holes

Examples:

Counter-examples :

Globular sums

\triangleright Globular sums formalize the idea of well-ordered and without holes

Globular sums

\triangleright Globular sums formalize the idea of well-ordered and without holes
\triangleright They are defined as colimits of disks, for diagrams of the form

Globular sums

\triangleright Globular sums formalize the idea of well-ordered and without holes
\triangleright They are defined as colimits of disks, for diagrams of the form

\triangleright The globular sums are exactly the pasting schemes. Define Θ_{0} to the full subcategory of globular sets whose objects are the globular sums.

Adding operations/coherences

\triangleright An operation in a globular set Γ is materialized by a morphism $\Gamma \rightarrow D^{k}$.

Adding operations/coherences

\triangleright An operation in a globular set Γ is materialized by a morphism $\Gamma \rightarrow D^{k}$.
\triangleright Build the category Θ_{∞} by freely adding arrows to Θ_{0}, according to the 2 following principles:

Adding operations/coherences

\triangleright An operation in a globular set Γ is materialized by a morphism $\Gamma \rightarrow D^{k}$.
\triangleright Build the category Θ_{∞} by freely adding arrows to Θ_{0}, according to the 2 following principles:

- Every pasting scheme has a composition

Adding operations/coherences

\triangleright An operation in a globular set Γ is materialized by a morphism $\Gamma \rightarrow D^{k}$.
\triangleright Build the category Θ_{∞} by freely adding arrows to Θ_{0}, according to the 2 following principles:

- Every pasting scheme has a composition
- Any two ways of composing a pasting scheme are connected by a higher cell

Adding operations/coherences

\triangleright An operation in a globular set Γ is materialized by a morphism $\Gamma \rightarrow D^{k}$.
\triangleright Build the category Θ_{∞} by freely adding arrows to Θ_{0}, according to the 2 following principles:

- Every pasting scheme has a composition
- Any two ways of composing a pasting scheme are connected by a higher cell
\triangleright This should remind you of "contractibility as uniqueness"

Adding operations/coherences

\triangleright An operation in a globular set Γ is materialized by a morphism $\Gamma \rightarrow D^{k}$.
\triangleright Build the category Θ_{∞} by freely adding arrows to Θ_{0}, according to the 2 following principles:

- Every pasting scheme has a composition
- Any two ways of composing a pasting scheme are connected by a higher cell
\triangleright This should remind you of "contractibility as uniqueness" actually one has to do inifitely many steps to build Θ_{∞}

Definition of weak ω-categories

Weak ω categories are globular sets which have all the compositions and coherences described in Θ_{∞}.

Definition of weak ω-categories

Weak ω categories are globular sets which have all the compositions and coherences described in Θ_{∞}.
\triangleright We can define them as presheaves over the category Θ_{∞}.

Definition of weak ω-categories

Weak ω categories are globular sets which have all the compositions and coherences described in Θ_{∞}.
\triangleright We can define them as presheaves over the category Θ_{∞}.
\triangleright We need to require those presheaves to preserve globular sums, to avoid having too much shapes allowed.

The type theory CaTT

Intuition

\triangleright Introduced by Finster and Mimram [4] Intuition: It defines the following "pushout"

Grothendieck's ω-groupoids $\xrightarrow{\text { direction }}$ G.-M. ω-categories

The type theory CaTT

Dependent type theories and their categorical semantics

Building blocks of a dependent type theory

A dependent type theory \mathcal{T} has syntactic objects:
\triangleright Contexts Γ, Δ, \ldots : lists of pairs of variables and types

$$
\Gamma \vdash
$$

Building blocks of a dependent type theory (DTT)

A dependent type theory \mathcal{T} has syntactic objects:
\triangleright Contexts Γ, Δ, \ldots : lists of pairs of variables and types

$$
\Gamma \vdash
$$

\triangleright Types A, B, \ldots : constructed with type constructors

$$
\Gamma \vdash A
$$

Building blocks of a dependent type theory (DTT)

A dependent type theory \mathcal{T} has syntactic objects:
\triangleright Contexts Γ, Δ, \ldots : lists of pairs of variables and types

$$
\Gamma \vdash
$$

\triangleright Types A, B, \ldots : constructed with type constructors

$$
\Gamma \vdash A
$$

\triangleright Terms : t, u, \ldots : constructed with term constructors

$$
\Gamma \vdash t: A
$$

Building blocks of a dependent type theory (DTT)

A dependent type theory \mathcal{T} has syntactic objects:
\triangleright Contexts Γ, Δ, \ldots : lists of pairs of variables and types

$$
\Gamma \vdash
$$

\triangleright Types A, B, \ldots : constructed with type constructors

$$
\Gamma \vdash A
$$

\triangleright Terms : t, u, \ldots : constructed with term constructors

$$
\Gamma \vdash t: A
$$

\triangleright Substitutions γ, δ, \ldots : lists of pairs of variables and terms

$$
\Delta \vdash \gamma: \Gamma
$$

Structure of a dependent type theories

The dependent type theories the structure in common
\triangleright A variable is a valid term in a context :

$$
\frac{\Gamma \vdash \quad(x, A) \in \Gamma}{\Gamma \vdash x: A}
$$

Structure of a dependent type theories

The dependent type theories the structure in common
\triangleright A variable is a valid term in a context :

$$
\frac{\Gamma \vdash \quad(x, A) \in \Gamma}{\Gamma \vdash x: A}
$$

\triangleright The substitutions act on terms and types

$$
\frac{\Delta \vdash \gamma: \Gamma \quad \Gamma \vdash A}{\Delta \vdash A[\gamma]}
$$

$$
\frac{\Delta \vdash \gamma: \Gamma \quad \Gamma \vdash t: A}{\Delta \vdash t[\gamma]: A[\gamma]}
$$

Structure of a dependent type theories

The dependent type theories the structure in common
\triangleright A variable is a valid term in a context :

$$
\frac{\Gamma \vdash \quad(x, A) \in \Gamma}{\Gamma \vdash x: A}
$$

\triangleright The substitutions act on terms and types

$$
\frac{\Delta \vdash \gamma: \Gamma \quad \Gamma \vdash A}{\Delta \vdash A[\gamma]} \quad \frac{\Delta \vdash \gamma: \Gamma \quad \Gamma \vdash t: A}{\Delta \vdash t[\gamma]: A[\gamma]}
$$

\triangleright Contexts can be extended with types

$$
\frac{\Gamma \vdash \quad \Gamma \vdash A \quad x \notin \Gamma}{\Gamma, x: A \vdash}
$$

Structure of a dependent type theories

The dependent type theories the structure in common
\triangleright A variable is a valid term in a context :

$$
\frac{\Gamma \vdash \quad(x, A) \in \Gamma}{\Gamma \vdash x: A}
$$

\triangleright The substitutions act on terms and types

$$
\frac{\Delta \vdash \gamma: \Gamma \quad \Gamma \vdash A}{\Delta \vdash A[\gamma]} \quad \frac{\Delta \vdash \gamma: \Gamma \quad \Gamma \vdash t: A}{\Delta \vdash t[\gamma]: A[\gamma]}
$$

\triangleright Contexts can be extended with types

$$
\frac{\Gamma \vdash \quad \Gamma \vdash A \quad x \notin \Gamma}{\Gamma, x: A \vdash}
$$

\triangleright Substitutions can be extended with terms

$$
\frac{\Delta \vdash \gamma: \Gamma \quad \Gamma \vdash A \quad \Delta \vdash t: A[\gamma] \quad x \notin \Gamma}{\Delta \vdash\langle\gamma, x \mapsto t\rangle:(\Gamma, x: A)}
$$

Categories with families (CwF)

Categories with families are a categorical formulation of the structure of DTT
\triangleright Introduced by Dybjer [3]

Categories with families (CwF)

Categories with families are a categorical formulation of the structure of DTT
\triangleright Introduced by Dybjer [3]
\triangleright Build a category : objects=context, morphisms=substitutions We call it the syntactic category of \mathcal{T} and denote it $\mathcal{S}_{\mathcal{T}}$

Categories with families (CwF)

Categories with families are a categorical formulation of the structure of DTT
\triangleright Introduced by Dybjer [3]
\triangleright Build a category : objects=context, morphisms=substitutions We call it the syntactic category of \mathcal{T} and denote it $\mathcal{S}_{\mathcal{T}}$
\triangleright It has a terminal element
The empty context

Categories with families (CwF)

Categories with families are a categorical formulation of the structure of DTT
\triangleright Introduced by Dybjer [3]
\triangleright Build a category : objects=context, morphisms=substitutions We call it the syntactic category of \mathcal{T} and denote it $\mathcal{S}_{\mathcal{T}}$
\triangleright It has a terminal element
The empty context
\triangleright Define $\mathrm{Ty}_{\Gamma}=\{$ types in $\Gamma\}, \mathrm{Tm}_{\Gamma}^{A}=\{$ terms of type A in $\Gamma\}$ Ty is a presheaf over $\mathcal{S}_{\mathcal{T}}, \mathrm{Tm}$ is a presheaf over $\mathrm{El}(\mathrm{Ty})$

Categories with families (CwF)

Categories with families are a categorical formulation of the structure of DTT
\triangleright Introduced by Dybjer [3]
\triangleright Build a category : objects=context, morphisms=substitutions We call it the syntactic category of \mathcal{T} and denote it $\mathcal{S}_{\mathcal{T}}$
\triangleright It has a terminal element
The empty context
\triangleright Define $\mathrm{Ty}_{\Gamma}=\{$ types in $\Gamma\}, \mathrm{Tm}_{\Gamma}^{A}=\{$ terms of type A in $\Gamma\}$ Ty is a presheaf over $\mathcal{S}_{\mathcal{T}}, \mathrm{Tm}$ is a presheaf over $\mathrm{El}(\mathrm{Ty})$
\triangleright A context extension : given a context Γ and a type $\Gamma \vdash A$, an object of $\mathcal{S}_{\mathcal{T}}$
Defines a functor $\mathrm{El}(\mathrm{Ty}) \rightarrow \mathcal{S}_{\mathcal{T}}$ characterized by a universal property

Categories with families (CwF)

Categories with families are a categorical formulation of the structure of DTT
\triangleright Introduced by Dybjer [3]
\triangleright Build a category : objects=context, morphisms=substitutions We call it the syntactic category of \mathcal{T} and denote it $\mathcal{S}_{\mathcal{T}}$
\triangleright It has a terminal element
The empty context
\triangleright Define $\mathrm{Ty}_{\Gamma}=\{$ types in $\Gamma\}, \mathrm{Tm}_{\Gamma}^{A}=\{$ terms of type A in $\Gamma\}$ Ty is a presheaf over $\mathcal{S}_{\mathcal{T}}, \mathrm{Tm}$ is a presheaf over $\mathrm{El}(\mathrm{Ty})$
\triangleright A context extension : given a context Γ and a type $\Gamma \vdash A$, an object of $\mathcal{S}_{\mathcal{T}}$
Defines a functor $\mathrm{El}(\mathrm{Ty}) \rightarrow \mathcal{S}_{\mathcal{T}}$ characterized by a universal property
A CwF is the collection of all this data
This presentation follows the style of Awodey's natural models

Categorical semantics

The models are a way to incarnate the axioms defining a dependent type theory in sets

Categorical semantics

The models are a way to incarnate the axioms defining a dependent type theory in sets
\triangleright There is a CwF structure on the category of sets

Categorical semantics

The models are a way to incarnate the axioms defining a dependent type theory in sets
\triangleright There is a CwF structure on the category of sets
\triangleright A model of the theory \mathcal{T} is a morphism of $\mathrm{CwF} \mathcal{S}_{\mathcal{T}} \rightarrow$ Set

The type theory CaTT

Presentation of the theory

The theory GSeTT

\triangleright Start with describing the type dependancies : higher dimensional shapes

The theory GSeTT

\triangleright Start with describing the type dependancies : higher dimensional shapes
\triangleright Same as Brunerie's Type Theory and Identity types in HoTT

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t \rightarrow A_{A} u}
$$

change the name to emphasize directionality

The theory GSeTT

\triangleright Start with describing the type dependancies : higher dimensional shapes
\triangleright Same as Brunerie's Type Theory and Identity types in HoTT

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t \rightarrow \vec{A}}
$$

change the name to emphasize directionality
\triangleright Denote GSeTT the theory with just these type constructors

The theory GSeTT

\triangleright Start with describing the type dependancies : higher dimensional shapes
\triangleright Same as Brunerie's Type Theory and Identity types in HoTT

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star} \quad \frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t \rightarrow \vec{A}}
$$

change the name to emphasize directionality
\triangleright Denote GSeTT the theory with just these type constructors
$\triangleright \mathcal{S}_{\mathrm{GSeTT}}$ is the opposite of finite globular sets For instance, the following context and globular sets are in correspondence

$$
(x: *, y: *, z: *, f: x->y, g: y->z)
$$

Ps-contexts

ps-contexts are context that represent pasting schemes

Ps-contexts

ps-contexts are context that represent pasting schemes
\triangleright We introduce the judgment $\Gamma \vdash_{\text {ps }}$ to recognize them To simplify the recognition, we require the ps-context to be in a specific order

Ps-contexts

ps-contexts are context that represent pasting schemes
\triangleright We introduce the judgment $\Gamma \vdash_{\text {ps }}$ to recognize them To simplify the recognition, we require the ps-context to be in a specific order
\triangleright Each ps-context Γ has a source $\partial^{-} \Gamma$ and a target $\partial^{+} \Gamma$

The theory CaTT

To the theory CaTT, add term constructors corresponding to the two principle expressing that the "space" of composition of each pasting scheme is "contractible".

The theory CaTT

To the theory CaTT, add term constructors corresponding to the two principle expressing that the "space" of composition of each pasting scheme is "contractible".
\triangleright Each pasting has a composition

$$
\frac{\Gamma \vdash_{\mathrm{ps}} \frac{\partial^{-} \Gamma \vdash t: A \quad \partial^{+} \Gamma \vdash u: A}{\Gamma \vdash \mathrm{op}_{\Gamma, t \rightarrow \rightarrow_{A} u}: t \rightarrow \underset{A}{ } u}}{}
$$

$$
\begin{aligned}
\operatorname{Var}(t: A) & =\operatorname{Var}\left(\partial^{-}(\Gamma)\right) \\
\operatorname{Var}(u: A) & =\operatorname{Var}\left(\partial^{+}(\Gamma)\right)
\end{aligned}
$$

The theory CaTT

To the theory CaTT, add term constructors corresponding to the two principle expressing that the "space" of composition of each pasting scheme is "contractible".
\triangleright Each pasting has a composition

$$
\begin{array}{llrl}
\Gamma \vdash_{\mathrm{ps}} & \partial^{-} \Gamma \vdash t: A \quad \partial^{+} \Gamma \vdash u: A \\
& \Gamma \vdash \mathrm{op}_{\Gamma, t \rightarrow u}: t \underset{A}{ } u & \operatorname{Var}(t: A) & =\operatorname{Var}\left(\partial^{-}(\Gamma)\right) \\
& \operatorname{Var}(u: A) & =\operatorname{Var}\left(\partial^{+}(\Gamma)\right)
\end{array}
$$

\triangleright Every two compositions of the same pasting scheme are related

$$
\begin{array}{rlrl}
\Gamma \vdash_{\mathrm{ps}} \Gamma \vdash t: A & \Gamma \vdash u: A \\
\Gamma \vdash \operatorname{coh}_{\Gamma, t \rightarrow u}: t \underset{A}{ } u & \operatorname{Var}(t: A) & =\operatorname{Var}(\Gamma) \\
(u: A) & =\operatorname{Var}(\Gamma)
\end{array}
$$

Applying operations and coherences

\triangleright We have explained how to compute terms in ps-contexts

Applying operations and coherences

\triangleright We have explained how to compute terms in ps-contexts
\triangleright We get terms in generic context by action of substitutions Hence relax the previous rules to have

$$
\begin{gathered}
\frac{\Gamma \vdash_{\mathrm{ps}}}{} \quad \partial^{-} \Gamma \vdash t: A \quad \partial^{+} \Gamma \vdash u: A \quad \Delta \vdash \gamma: \Gamma \\
\Delta \vdash \mathrm{op}_{\Gamma, t \rightarrow \mathrm{~A}}[\gamma]: t[\gamma] \rightarrow u[\gamma] \\
\frac{\Gamma \vdash_{\mathrm{ps}}}{} \quad \Gamma \vdash t: A \quad \Gamma \vdash u: A \quad \Delta \vdash \gamma: \Gamma \\
\end{gathered}
$$

(keeping the side condition)

Examples of derivation

\triangleright Composition :
Consider the ps-context
$\Gamma_{c}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z)$.

Examples of derivation

\triangleright Composition :
Consider the ps-context
$\Gamma_{c}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z)$.
We have $\partial^{-} \Gamma_{c}=(x: \star)$ and $\partial^{+} \Gamma_{c}=(z: \star)$.

Examples of derivation

\triangleright Composition :
Consider the ps-context
$\Gamma_{c}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z)$.
We have $\partial^{-} \Gamma_{c}=(x: \star)$ and $\partial^{+} \Gamma_{c}=(z: \star)$.
So we deduce the term $\Gamma_{c} \vdash \mathrm{op}_{\Gamma_{c}, x \rightarrow z}: x \rightarrow z$ (denoted comp).

Examples of derivation

\triangleright Composition :
Consider the ps-context
$\Gamma_{c}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z)$.
We have $\partial^{-} \Gamma_{c}=(x: \star)$ and $\partial^{+} \Gamma_{c}=(z: \star)$.
So we deduce the term $\Gamma_{c} \vdash \mathrm{op}_{\Gamma_{c}, x \rightarrow z}: x \rightarrow z$ (denoted comp).
\triangleright Associativity :
Consider the ps-context

$$
\Gamma_{a}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z, w: \star, h: z \rightarrow w) .
$$

Examples of derivation

\triangleright Composition :
Consider the ps-context
$\Gamma_{c}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z)$.
We have $\partial^{-} \Gamma_{c}=(x: \star)$ and $\partial^{+} \Gamma_{c}=(z: \star)$.
So we deduce the term $\Gamma_{c} \vdash \mathrm{op}_{\Gamma_{c}, x \rightarrow z}: x \rightarrow z$ (denoted comp).
\triangleright Associativity :
Consider the ps-context
$\Gamma_{a}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z, w: \star, h: z \rightarrow w)$.
We have the type
$\Gamma_{a} \vdash \operatorname{comp}(f, \operatorname{comp}(g, h)) \rightarrow \operatorname{comp}(\operatorname{comp}(f, g), h)$.

Examples of derivation

\triangleright Composition :
Consider the ps-context
$\Gamma_{c}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z)$.
We have $\partial^{-} \Gamma_{c}=(x: \star)$ and $\partial^{+} \Gamma_{c}=(z: \star)$.
So we deduce the term $\Gamma_{c} \vdash \mathrm{op}_{\Gamma_{c}, x \rightarrow z}: x \rightarrow z$ (denoted comp).
\triangleright Associativity :
Consider the ps-context
$\Gamma_{a}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z, w: \star, h: z \rightarrow w)$.
We have the type
$\Gamma_{a} \vdash \operatorname{comp}(f, \operatorname{comp}(g, h)) \rightarrow \operatorname{comp}(\operatorname{comp}(f, g), h)$.
Both sides use all the variables of Γ_{a} (some are implicit).

Examples of derivation

\triangleright Composition :
Consider the ps-context
$\Gamma_{c}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z)$.
We have $\partial^{-} \Gamma_{c}=(x: \star)$ and $\partial^{+} \Gamma_{c}=(z: \star)$.
So we deduce the term $\Gamma_{c} \vdash \mathrm{op}_{\Gamma_{c}, x \rightarrow z}: x \rightarrow z$ (denoted comp).
\triangleright Associativity :
Consider the ps-context
$\Gamma_{a}=(x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z, w: \star, h: z \rightarrow w)$.
We have the type
$\Gamma_{a} \vdash \operatorname{comp}(f, \operatorname{comp}(g, h)) \rightarrow \operatorname{comp}(\operatorname{comp}(f, g), h)$.
Both sides use all the variables of Γ_{a} (some are implicit). So we deduce the term $\Gamma_{c} \vdash \mathrm{op}_{\Gamma_{c}, x \rightarrow z}: x \rightarrow z$ (denoted comp).

The type theory CaTT

Semantics of the theory

The subcategory of ps-contexts

Define PS : the full subcategory of $\mathcal{S}_{\text {CaTT }}$ whose objects are the ps-contexts

The subcategory of ps-contexts

Define PS : the full subcategory of $\mathcal{S}_{\text {CaTT }}$ whose objects are the ps-contexts

Theorem (B., Finster, Mimram)
The category PS is equivalent to $\Theta_{\infty}^{\circ p}$

Models of the theory

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the G.-M. weak ω-categories

Models of the theory

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the G.-M. weak ω-categories

Models of the theory

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the G.-M. weak ω-categories

Proved by showing the initiality theorem for the theory CaTT.

The syntactic category

\triangleright The category $\mathcal{S}_{\text {CaTT }}$ naturally appears in our presentation What is its significance?

The syntactic category

\triangleright The category $\mathcal{S}_{\text {CaTT }}$ naturally appears in our presentation What is its significance?
\triangleright The Yoneda embedding provides an inclusion of $\mathcal{S}_{\mathrm{CaTT}}^{\mathrm{op}}$ into its models the weak ω-categories. Conjecture : the syntactic category is the opposite of the subcategory of the weak ω-categories freely by finite computads, for an appropriate notion of computad.

The syntactic category

\triangleright The category $\mathcal{S}_{\text {CaTT }}$ naturally appears in our presentation What is its significance?
\triangleright The Yoneda embedding provides an inclusion of $\mathcal{S}_{\mathrm{CaTT}}^{\mathrm{op}}$ into its models the weak ω-categories. Conjecture : the syntactic category is the opposite of the subcategory of the weak ω-categories freely by finite computads, for an appropriate notion of computad.
\triangleright There is work conducted around this conjecture and extension of CaTT.
Ongoing work related to this question and CaTT by Finster, Vicary, Markakis, Rice

Thank you!

References I

圊 Dimitri Ara．
Sur les ∞－groupoïdes de Grothendieck et une variante ∞－catégorique．
PhD thesis，Université Paris 7， 2010.
圊 Guillaume Brunerie．
On the homotopy groups of spheres in homotopy type theory． arXiv preprint arXiv ：1606．05916， 2016.

囯 Peter Dybjer．
Internal Type Theory．
In Types for Proofs and Programs．TYPES 1995，pages
120－134．Springer，Berlin，Heidelberg， 1996.

References II

Eric Finster and Samuel Mimram.
A Type-Theoretical Definition of Weak ω-Categories.
In 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1-12, 2017.
Alexander Grothendieck.
Pursuing stacks.
Unpublished manuscript, 1983.
Tom Leinster.
Higher operads, higher categories, volume 298.
Cambridge University Press, 2004.
國 Georges Maltsiniotis.
Grothendieck ∞-groupoids, and still another definition of ∞-categories.
Preprint arXiv:1009.2331, 2010.

