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Dependent type theories and higher structures



HoTT and weak ω-groupoids

. In HoTT every type has associated tower of identity type

. The iterated identity types have the structure of an ω-groupoid

. This suggest a link between dependent type theories and
higher structures.
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Brunerie’s type theory

. A minimal dependent type theory to describe weak
ω-groupoids, introduced by Brunerie [2]

. Types : encode the higher dimensional disks (same dependency
as in HoTT)

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t =A u

In this type theory, the identity types are not inductive, instead
there is a family of term constructors that witnesses the algebraic
structure.
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DTT and higher structures

The correspondence between dependent type theories and higher
algebraic structure follows the principle

type dependency higher dimensional shapes
term constructors algebraic structure



Weak ω-categories



An Overview

Weak ω-categories are higher structure with directed arrows in all
levels

ω 6=∞, Lurie uses "∞-categories" for (∞, 1)− categories.

Several definitions, among which some globular ones are

. Batanin-Leinster [6] :Algebras for the initial globular operad with
contractions.

. Grothendieck-Maltsiniotis (G.-M.) [7] :Presheaves over the
category Θ∞ which preserve globular sums.

Lots of other definitions, with other shapes.
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Weak ω-categories

The Grothendieck-Maltsiniotis definition



A bit of context

. Originally proposed by Grothendieck for weak ω-groupoids [5].
Brunerie has proved that his type theory describes exactly
Grothendieck’s weak ω-groupoids

. Extended by Maltsiniotis to weak ω-categories [7]
Intuition : enforce a privileged direction on the rules

. Proven equivalent to Batanin-Leinster definition by Ara [1]
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A globular definition
. Supported by globular sets
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. Presheaf category whose representables are disks

D0 : • D1 : • •

D2 : • •⇓ D3 : • •⇓V⇓
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Pasting schemes

Pasting schemes are globular sets that represent a "unique"
composition in ω-categories.

. They are well ordered and without holes

Examples : • • •
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Globular sums

. Globular sums formalize the idea of well-ordered and without
holes

. They are defined as colimits of disks, for diagrams of the form

D i1 D i2 . . . D ik

D j1 D j2 . . . D jk−1

. The globular sums are exactly the pasting schemes.
Define Θ0 to the full subcategory of globular sets whose objects are
the globular sums.
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Adding operations/coherences

. An operation in a globular set Γ is materialized by a morphism
Γ→ Dk .

. Build the category Θ∞ by freely adding arrows to Θ0,
according to the 2 following principles :

• Every pasting scheme has a composition
• Any two ways of composing a pasting scheme are
connected by a higher cell

. This should remind you of "contractibility as uniqueness"
actually one has to do inifitely many steps to build Θ∞
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Definition of weak ω-categories

Weak ω categories are globular sets which have all the
compositions and coherences described in Θ∞.

. We can define them as presheaves over the category Θ∞.

. We need to require those presheaves to preserve globular sums,
to avoid having too much shapes allowed.
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The type theory CaTT



Intuition

. Introduced by Finster and Mimram [4]
Intuition : It defines the following "pushout"

Grothendieck’s ω-groupoids G.-M. ω-categories

Brunerie’s type theory CaTT

direction

type theory

p
type theory

direction



The type theory CaTT

Dependent type theories and their categorical semantics



Building blocks of a dependent type theory
(DTT)

A dependent type theory T has syntactic objects :
. Contexts Γ,∆, . . . : lists of pairs of variables and types

Γ `

. Types A,B, . . . : constructed with type constructors

Γ ` A

. Terms : t, u, . . . : constructed with term constructors

Γ ` t : A

. Substitutions γ, δ, . . . : lists of pairs of variables and terms

∆ ` γ : Γ
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Structure of a dependent type theories
The dependent type theories the structure in common
. A variable is a valid term in a context :

Γ ` (x ,A) ∈ Γ

Γ ` x : A

. The substitutions act on terms and types

∆ ` γ : Γ Γ ` A

∆ ` A[γ]

∆ ` γ : Γ Γ ` t : A

∆ ` t[γ] : A[γ]

. Contexts can be extended with types
Γ ` Γ ` A x /∈ Γ

Γ, x : A `

. Substitutions can be extended with terms
∆ ` γ : Γ Γ ` A ∆ ` t : A[γ] x /∈ Γ

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)
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Categories with families (CwF)

Categories with families are a categorical formulation of the
structure of DTT

. Introduced by Dybjer [3]

. Build a category : objects=context, morphisms=substitutions
We call it the syntactic category of T and denote it ST

. It has a terminal element
The empty context

. Define TyΓ = {types in Γ}, TmA
Γ = {terms of type A in Γ}

Ty is a presheaf over ST , Tm is a presheaf over El(Ty)

. A context extension : given a context Γ and a type Γ ` A, an
object of ST
Defines a functor El(Ty)→ ST characterized by a universal property

A CwF is the collection of all this data
This presentation follows the style of Awodey’s natural models
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The models are a way to incarnate the axioms defining a
dependent type theory in sets

. There is a CwF structure on the category of sets

. A model of the theory T is a morphism of CwF ST → Set
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The type theory CaTT

Presentation of the theory



The theory GSeTT
. Start with describing the type dependancies : higher

dimensional shapes

. Same as Brunerie’s Type Theory and Identity types in HoTT

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t−→
A
u

change the name to emphasize directionality

. Denote GSeTT the theory with just these type constructors

. SGSeTT is the opposite of finite globular sets
For instance, the following context and globular sets are in
correspondence

(x:*, y:*, z:*, f:x->y, g: y->z)
x•

y
• z•
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Ps-contexts
ps-contexts are context that represent pasting schemes

. We introduce the judgment Γ `ps to recognize them
To simplify the recognition, we require the ps-context to be in a
specific order

. Each ps-context Γ has a source ∂−Γ and a target ∂+Γ

∂−Γ • • •

Γ • • •

∂+Γ • • •

⇓
⇓



Ps-contexts
ps-contexts are context that represent pasting schemes

. We introduce the judgment Γ `ps to recognize them
To simplify the recognition, we require the ps-context to be in a
specific order

. Each ps-context Γ has a source ∂−Γ and a target ∂+Γ

∂−Γ • • •

Γ • • •

∂+Γ • • •

⇓
⇓



Ps-contexts
ps-contexts are context that represent pasting schemes

. We introduce the judgment Γ `ps to recognize them
To simplify the recognition, we require the ps-context to be in a
specific order

. Each ps-context Γ has a source ∂−Γ and a target ∂+Γ

∂−Γ • • •

Γ • • •

∂+Γ • • •

⇓
⇓



The theory CaTT
To the theory CaTT, add term constructors corresponding to the
two principle expressing that the "space" of composition of each
pasting scheme is "contractible".

. Each pasting has a composition

Γ `ps ∂−Γ ` t : A ∂+Γ ` u : A

Γ ` op
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(∂−(Γ))
Var(u : A) = Var(∂+(Γ))

. Every two compositions of the same pasting scheme are
related

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)
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A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)



Applying operations and coherences

. We have explained how to compute terms in ps-contexts

. We get terms in generic context by action of substitutions
Hence relax the previous rules to have

Γ `ps ∂−Γ ` t : A ∂+Γ ` u : A ∆ ` γ : Γ

∆ ` op
Γ,t−→

A
u
[γ] : t[γ]→u[γ]

Γ `ps Γ ` t : A Γ ` u : A ∆ ` γ : Γ

∆ ` coh
Γ,t−→

A
u
[γ] : t[γ]→u[γ]

(keeping the side condition)
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Examples of derivation

. Composition :
Consider the ps-context
Γc = (x : ?, y : ?, f : x→y , z : ?, g : y→z).

We have ∂−Γc = (x : ?) and ∂+Γc = (z : ?).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).

. Associativity :
Consider the ps-context
Γa = (x : ?, y : ?, f : x→y , z : ?, g : y→z ,w : ?, h : z→w).
We have the type
Γa ` comp(f , comp(g , h))→comp(comp(f , g), h).
Both sides use all the variables of Γa (some are implicit).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).
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The type theory CaTT

Semantics of the theory



The subcategory of ps-contexts

Define PS : the full subcategory of SCaTT whose objects are the
ps-contexts

Theorem (B., Finster, Mimram)
The category PS is equivalent to Θop

∞
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Models of the theory

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the G.-M. weak ω-categories

SCaTT Set

PS ' Θop
∞

CwF morphism

globular sum preserving

Proved by showing the initiality theorem for the theory CaTT.
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The syntactic category

. The category SCaTT naturally appears in our presentation
What is its significance ?

. The Yoneda embedding provides an inclusion of Sop
CaTT into its

models the weak ω-categories.
Conjecture : the syntactic category is the opposite of the
subcategory of the weak ω-categories freely by finite computads, for
an appropriate notion of computad.

. There is work conducted around this conjecture and extension
of CaTT.
Ongoing work related to this question and CaTT by Finster, Vicary,
Markakis, Rice
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Thank you !
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