
Weak ω-categories as models of a type theory

Thibaut Benjamin

CEA LIST

Logic and higher structures
CIRM, February 23, 2022



Dependent type theories and higher structures



HoTT and weak ω-groupoids

. In HoTT every type has associated tower of identity type

. The iterated identity types have the structure of an ω-groupoid

. This suggest a link between dependent type theories and
higher structures.



HoTT and weak ω-groupoids

. In HoTT every type has associated tower of identity type

. The iterated identity types have the structure of an ω-groupoid

. This suggest a link between dependent type theories and
higher structures.



HoTT and weak ω-groupoids

. In HoTT every type has associated tower of identity type

. The iterated identity types have the structure of an ω-groupoid

. This suggest a link between dependent type theories and
higher structures.



Brunerie’s type theory

. A minimal dependent type theory to describe weak
ω-groupoids, introduced by Brunerie [2]

. Types : encode the higher dimensional disks (same dependency
as in HoTT)

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t =A u

In this type theory, the identity types are not inductive, instead
there is a family of term constructors that witnesses the algebraic
structure.



Brunerie’s type theory

. A minimal dependent type theory to describe weak
ω-groupoids, introduced by Brunerie [2]

. Types : encode the higher dimensional disks (same dependency
as in HoTT)

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t =A u

In this type theory, the identity types are not inductive, instead
there is a family of term constructors that witnesses the algebraic
structure.



Brunerie’s type theory

. A minimal dependent type theory to describe weak
ω-groupoids, introduced by Brunerie [2]

. Types : encode the higher dimensional disks (same dependency
as in HoTT)

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t =A u

In this type theory, the identity types are not inductive, instead
there is a family of term constructors that witnesses the algebraic
structure.



DTT and higher structures

The correspondence between dependent type theories and higher
algebraic structure follows the principle

type dependency higher dimensional shapes
term constructors algebraic structure



Weak ω-categories



An Overview

Weak ω-categories are higher structure with directed arrows in all
levels

ω 6=∞, Lurie uses "∞-categories" for (∞, 1)− categories.

Several definitions, among which some globular ones are

. Batanin-Leinster [6] :Algebras for the initial globular operad with
contractions.

. Grothendieck-Maltsiniotis (G.-M.) [7] :Presheaves over the
category Θ∞ which preserve globular sums.

Lots of other definitions, with other shapes.



An Overview

Weak ω-categories are higher structure with directed arrows in all
levels

ω 6=∞, Lurie uses "∞-categories" for (∞, 1)− categories.

Several definitions, among which some globular ones are
. Batanin-Leinster [6] :Algebras for the initial globular operad with

contractions.

. Grothendieck-Maltsiniotis (G.-M.) [7] :Presheaves over the
category Θ∞ which preserve globular sums.

Lots of other definitions, with other shapes.



An Overview

Weak ω-categories are higher structure with directed arrows in all
levels

ω 6=∞, Lurie uses "∞-categories" for (∞, 1)− categories.

Several definitions, among which some globular ones are
. Batanin-Leinster [6] :Algebras for the initial globular operad with

contractions.

. Grothendieck-Maltsiniotis (G.-M.) [7] :Presheaves over the
category Θ∞ which preserve globular sums.

Lots of other definitions, with other shapes.



An Overview

Weak ω-categories are higher structure with directed arrows in all
levels

ω 6=∞, Lurie uses "∞-categories" for (∞, 1)− categories.

Several definitions, among which some globular ones are
. Batanin-Leinster [6] :Algebras for the initial globular operad with

contractions.

. Grothendieck-Maltsiniotis (G.-M.) [7] :Presheaves over the
category Θ∞ which preserve globular sums.

Lots of other definitions, with other shapes.



Weak ω-categories

The Grothendieck-Maltsiniotis definition



A bit of context

. Originally proposed by Grothendieck for weak ω-groupoids [5].
Brunerie has proved that his type theory describes exactly
Grothendieck’s weak ω-groupoids

. Extended by Maltsiniotis to weak ω-categories [7]
Intuition : enforce a privileged direction on the rules

. Proven equivalent to Batanin-Leinster definition by Ara [1]



A bit of context

. Originally proposed by Grothendieck for weak ω-groupoids [5].
Brunerie has proved that his type theory describes exactly
Grothendieck’s weak ω-groupoids

. Extended by Maltsiniotis to weak ω-categories [7]
Intuition : enforce a privileged direction on the rules

. Proven equivalent to Batanin-Leinster definition by Ara [1]



A bit of context

. Originally proposed by Grothendieck for weak ω-groupoids [5].
Brunerie has proved that his type theory describes exactly
Grothendieck’s weak ω-groupoids

. Extended by Maltsiniotis to weak ω-categories [7]
Intuition : enforce a privileged direction on the rules

. Proven equivalent to Batanin-Leinster definition by Ara [1]



A globular definition
. Supported by globular sets

• • •

•

⇓

⇓V⇓

. Presheaf category whose representables are disks

D0 : • D1 : • •

D2 : • •⇓ D3 : • •⇓V⇓

. . .



A globular definition
. Supported by globular sets

• • •

•

⇓

⇓V⇓

. Presheaf category whose representables are disks

D0 : • D1 : • •

D2 : • •⇓ D3 : • •⇓V⇓

. . .



Pasting schemes

Pasting schemes are globular sets that represent a "unique"
composition in ω-categories.

. They are well ordered and without holes

Examples : • • •

• • • •

• • • •⇓
⇓ ⇓V⇓

Counter-examples : • • •

• •
⇓

⇓
• •



Pasting schemes

Pasting schemes are globular sets that represent a "unique"
composition in ω-categories.

. They are well ordered and without holes

Examples : • • •

• • • •

• • • •⇓
⇓ ⇓V⇓

Counter-examples : • • •

• •
⇓

⇓
• •



Pasting schemes

Pasting schemes are globular sets that represent a "unique"
composition in ω-categories.

. They are well ordered and without holes

Examples : • • • • • • •

• • • •⇓
⇓ ⇓V⇓

Counter-examples : • • •

• •
⇓

⇓
• •



Pasting schemes

Pasting schemes are globular sets that represent a "unique"
composition in ω-categories.

. They are well ordered and without holes

Examples : • • • • • • •

• • • •⇓
⇓ ⇓V⇓

Counter-examples : • • •

• •
⇓

⇓
• •



Pasting schemes

Pasting schemes are globular sets that represent a "unique"
composition in ω-categories.

. They are well ordered and without holes

Examples : • • • • • • •

• • • •⇓
⇓ ⇓V⇓

Counter-examples : • • •

• •
⇓

⇓
• •



Pasting schemes

Pasting schemes are globular sets that represent a "unique"
composition in ω-categories.

. They are well ordered and without holes

Examples : • • • • • • •

• • • •⇓
⇓ ⇓V⇓

Counter-examples : • • • • •
⇓

⇓

• •



Pasting schemes

Pasting schemes are globular sets that represent a "unique"
composition in ω-categories.

. They are well ordered and without holes

Examples : • • • • • • •

• • • •⇓
⇓ ⇓V⇓

Counter-examples : • • • • •
⇓

⇓
• •



Globular sums

. Globular sums formalize the idea of well-ordered and without
holes

. They are defined as colimits of disks, for diagrams of the form

D i1 D i2 . . . D ik

D j1 D j2 . . . D jk−1

. The globular sums are exactly the pasting schemes.
Define Θ0 to the full subcategory of globular sets whose objects are
the globular sums.



Globular sums

. Globular sums formalize the idea of well-ordered and without
holes

. They are defined as colimits of disks, for diagrams of the form

D i1 D i2 . . . D ik

D j1 D j2 . . . D jk−1

. The globular sums are exactly the pasting schemes.
Define Θ0 to the full subcategory of globular sets whose objects are
the globular sums.



Globular sums

. Globular sums formalize the idea of well-ordered and without
holes

. They are defined as colimits of disks, for diagrams of the form

D i1 D i2 . . . D ik

D j1 D j2 . . . D jk−1

. The globular sums are exactly the pasting schemes.
Define Θ0 to the full subcategory of globular sets whose objects are
the globular sums.



Adding operations/coherences

. An operation in a globular set Γ is materialized by a morphism
Γ→ Dk .

. Build the category Θ∞ by freely adding arrows to Θ0,
according to the 2 following principles :

• Every pasting scheme has a composition
• Any two ways of composing a pasting scheme are
connected by a higher cell

. This should remind you of "contractibility as uniqueness"
actually one has to do inifitely many steps to build Θ∞



Adding operations/coherences

. An operation in a globular set Γ is materialized by a morphism
Γ→ Dk .

. Build the category Θ∞ by freely adding arrows to Θ0,
according to the 2 following principles :

• Every pasting scheme has a composition
• Any two ways of composing a pasting scheme are
connected by a higher cell

. This should remind you of "contractibility as uniqueness"
actually one has to do inifitely many steps to build Θ∞



Adding operations/coherences

. An operation in a globular set Γ is materialized by a morphism
Γ→ Dk .

. Build the category Θ∞ by freely adding arrows to Θ0,
according to the 2 following principles :
• Every pasting scheme has a composition

• Any two ways of composing a pasting scheme are
connected by a higher cell

. This should remind you of "contractibility as uniqueness"
actually one has to do inifitely many steps to build Θ∞



Adding operations/coherences

. An operation in a globular set Γ is materialized by a morphism
Γ→ Dk .

. Build the category Θ∞ by freely adding arrows to Θ0,
according to the 2 following principles :
• Every pasting scheme has a composition
• Any two ways of composing a pasting scheme are
connected by a higher cell

. This should remind you of "contractibility as uniqueness"
actually one has to do inifitely many steps to build Θ∞



Adding operations/coherences

. An operation in a globular set Γ is materialized by a morphism
Γ→ Dk .

. Build the category Θ∞ by freely adding arrows to Θ0,
according to the 2 following principles :
• Every pasting scheme has a composition
• Any two ways of composing a pasting scheme are
connected by a higher cell

. This should remind you of "contractibility as uniqueness"

actually one has to do inifitely many steps to build Θ∞



Adding operations/coherences

. An operation in a globular set Γ is materialized by a morphism
Γ→ Dk .

. Build the category Θ∞ by freely adding arrows to Θ0,
according to the 2 following principles :
• Every pasting scheme has a composition
• Any two ways of composing a pasting scheme are
connected by a higher cell

. This should remind you of "contractibility as uniqueness"
actually one has to do inifitely many steps to build Θ∞



Definition of weak ω-categories

Weak ω categories are globular sets which have all the
compositions and coherences described in Θ∞.

. We can define them as presheaves over the category Θ∞.

. We need to require those presheaves to preserve globular sums,
to avoid having too much shapes allowed.



Definition of weak ω-categories

Weak ω categories are globular sets which have all the
compositions and coherences described in Θ∞.

. We can define them as presheaves over the category Θ∞.

. We need to require those presheaves to preserve globular sums,
to avoid having too much shapes allowed.



Definition of weak ω-categories

Weak ω categories are globular sets which have all the
compositions and coherences described in Θ∞.

. We can define them as presheaves over the category Θ∞.

. We need to require those presheaves to preserve globular sums,
to avoid having too much shapes allowed.



The type theory CaTT



Intuition

. Introduced by Finster and Mimram [4]
Intuition : It defines the following "pushout"

Grothendieck’s ω-groupoids G.-M. ω-categories

Brunerie’s type theory CaTT

direction

type theory

p
type theory

direction



The type theory CaTT

Dependent type theories and their categorical semantics



Building blocks of a dependent type theory
(DTT)

A dependent type theory T has syntactic objects :
. Contexts Γ,∆, . . . : lists of pairs of variables and types

Γ `

. Types A,B, . . . : constructed with type constructors

Γ ` A

. Terms : t, u, . . . : constructed with term constructors

Γ ` t : A

. Substitutions γ, δ, . . . : lists of pairs of variables and terms

∆ ` γ : Γ



Building blocks of a dependent type theory
(DTT)

A dependent type theory T has syntactic objects :
. Contexts Γ,∆, . . . : lists of pairs of variables and types

Γ `

. Types A,B, . . . : constructed with type constructors

Γ ` A

. Terms : t, u, . . . : constructed with term constructors

Γ ` t : A

. Substitutions γ, δ, . . . : lists of pairs of variables and terms

∆ ` γ : Γ



Building blocks of a dependent type theory
(DTT)

A dependent type theory T has syntactic objects :
. Contexts Γ,∆, . . . : lists of pairs of variables and types

Γ `

. Types A,B, . . . : constructed with type constructors

Γ ` A

. Terms : t, u, . . . : constructed with term constructors

Γ ` t : A

. Substitutions γ, δ, . . . : lists of pairs of variables and terms

∆ ` γ : Γ



Building blocks of a dependent type theory
(DTT)

A dependent type theory T has syntactic objects :
. Contexts Γ,∆, . . . : lists of pairs of variables and types

Γ `

. Types A,B, . . . : constructed with type constructors

Γ ` A

. Terms : t, u, . . . : constructed with term constructors

Γ ` t : A

. Substitutions γ, δ, . . . : lists of pairs of variables and terms

∆ ` γ : Γ



Structure of a dependent type theories
The dependent type theories the structure in common
. A variable is a valid term in a context :

Γ ` (x ,A) ∈ Γ

Γ ` x : A

. The substitutions act on terms and types

∆ ` γ : Γ Γ ` A

∆ ` A[γ]

∆ ` γ : Γ Γ ` t : A

∆ ` t[γ] : A[γ]

. Contexts can be extended with types
Γ ` Γ ` A x /∈ Γ

Γ, x : A `

. Substitutions can be extended with terms
∆ ` γ : Γ Γ ` A ∆ ` t : A[γ] x /∈ Γ

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)



Structure of a dependent type theories
The dependent type theories the structure in common
. A variable is a valid term in a context :

Γ ` (x ,A) ∈ Γ

Γ ` x : A

. The substitutions act on terms and types

∆ ` γ : Γ Γ ` A

∆ ` A[γ]

∆ ` γ : Γ Γ ` t : A

∆ ` t[γ] : A[γ]

. Contexts can be extended with types
Γ ` Γ ` A x /∈ Γ

Γ, x : A `

. Substitutions can be extended with terms
∆ ` γ : Γ Γ ` A ∆ ` t : A[γ] x /∈ Γ

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)



Structure of a dependent type theories
The dependent type theories the structure in common
. A variable is a valid term in a context :

Γ ` (x ,A) ∈ Γ

Γ ` x : A

. The substitutions act on terms and types

∆ ` γ : Γ Γ ` A

∆ ` A[γ]

∆ ` γ : Γ Γ ` t : A

∆ ` t[γ] : A[γ]

. Contexts can be extended with types
Γ ` Γ ` A x /∈ Γ

Γ, x : A `

. Substitutions can be extended with terms
∆ ` γ : Γ Γ ` A ∆ ` t : A[γ] x /∈ Γ

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)



Structure of a dependent type theories
The dependent type theories the structure in common
. A variable is a valid term in a context :

Γ ` (x ,A) ∈ Γ

Γ ` x : A

. The substitutions act on terms and types

∆ ` γ : Γ Γ ` A

∆ ` A[γ]

∆ ` γ : Γ Γ ` t : A

∆ ` t[γ] : A[γ]

. Contexts can be extended with types
Γ ` Γ ` A x /∈ Γ

Γ, x : A `

. Substitutions can be extended with terms
∆ ` γ : Γ Γ ` A ∆ ` t : A[γ] x /∈ Γ

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)



Categories with families (CwF)

Categories with families are a categorical formulation of the
structure of DTT

. Introduced by Dybjer [3]

. Build a category : objects=context, morphisms=substitutions
We call it the syntactic category of T and denote it ST

. It has a terminal element
The empty context

. Define TyΓ = {types in Γ}, TmA
Γ = {terms of type A in Γ}

Ty is a presheaf over ST , Tm is a presheaf over El(Ty)

. A context extension : given a context Γ and a type Γ ` A, an
object of ST
Defines a functor El(Ty)→ ST characterized by a universal property

A CwF is the collection of all this data
This presentation follows the style of Awodey’s natural models



Categories with families (CwF)

Categories with families are a categorical formulation of the
structure of DTT

. Introduced by Dybjer [3]

. Build a category : objects=context, morphisms=substitutions
We call it the syntactic category of T and denote it ST

. It has a terminal element
The empty context

. Define TyΓ = {types in Γ}, TmA
Γ = {terms of type A in Γ}

Ty is a presheaf over ST , Tm is a presheaf over El(Ty)

. A context extension : given a context Γ and a type Γ ` A, an
object of ST
Defines a functor El(Ty)→ ST characterized by a universal property

A CwF is the collection of all this data
This presentation follows the style of Awodey’s natural models



Categories with families (CwF)

Categories with families are a categorical formulation of the
structure of DTT

. Introduced by Dybjer [3]

. Build a category : objects=context, morphisms=substitutions
We call it the syntactic category of T and denote it ST

. It has a terminal element
The empty context

. Define TyΓ = {types in Γ}, TmA
Γ = {terms of type A in Γ}

Ty is a presheaf over ST , Tm is a presheaf over El(Ty)

. A context extension : given a context Γ and a type Γ ` A, an
object of ST
Defines a functor El(Ty)→ ST characterized by a universal property

A CwF is the collection of all this data
This presentation follows the style of Awodey’s natural models



Categories with families (CwF)

Categories with families are a categorical formulation of the
structure of DTT

. Introduced by Dybjer [3]

. Build a category : objects=context, morphisms=substitutions
We call it the syntactic category of T and denote it ST

. It has a terminal element
The empty context

. Define TyΓ = {types in Γ}, TmA
Γ = {terms of type A in Γ}

Ty is a presheaf over ST , Tm is a presheaf over El(Ty)

. A context extension : given a context Γ and a type Γ ` A, an
object of ST
Defines a functor El(Ty)→ ST characterized by a universal property

A CwF is the collection of all this data
This presentation follows the style of Awodey’s natural models



Categories with families (CwF)

Categories with families are a categorical formulation of the
structure of DTT

. Introduced by Dybjer [3]

. Build a category : objects=context, morphisms=substitutions
We call it the syntactic category of T and denote it ST

. It has a terminal element
The empty context

. Define TyΓ = {types in Γ}, TmA
Γ = {terms of type A in Γ}

Ty is a presheaf over ST , Tm is a presheaf over El(Ty)

. A context extension : given a context Γ and a type Γ ` A, an
object of ST
Defines a functor El(Ty)→ ST characterized by a universal property

A CwF is the collection of all this data
This presentation follows the style of Awodey’s natural models



Categories with families (CwF)

Categories with families are a categorical formulation of the
structure of DTT

. Introduced by Dybjer [3]

. Build a category : objects=context, morphisms=substitutions
We call it the syntactic category of T and denote it ST

. It has a terminal element
The empty context

. Define TyΓ = {types in Γ}, TmA
Γ = {terms of type A in Γ}

Ty is a presheaf over ST , Tm is a presheaf over El(Ty)

. A context extension : given a context Γ and a type Γ ` A, an
object of ST
Defines a functor El(Ty)→ ST characterized by a universal property

A CwF is the collection of all this data
This presentation follows the style of Awodey’s natural models



Categorical semantics

The models are a way to incarnate the axioms defining a
dependent type theory in sets

. There is a CwF structure on the category of sets

. A model of the theory T is a morphism of CwF ST → Set



Categorical semantics

The models are a way to incarnate the axioms defining a
dependent type theory in sets

. There is a CwF structure on the category of sets

. A model of the theory T is a morphism of CwF ST → Set



Categorical semantics

The models are a way to incarnate the axioms defining a
dependent type theory in sets

. There is a CwF structure on the category of sets

. A model of the theory T is a morphism of CwF ST → Set



The type theory CaTT

Presentation of the theory



The theory GSeTT
. Start with describing the type dependancies : higher

dimensional shapes

. Same as Brunerie’s Type Theory and Identity types in HoTT

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t−→
A
u

change the name to emphasize directionality

. Denote GSeTT the theory with just these type constructors

. SGSeTT is the opposite of finite globular sets
For instance, the following context and globular sets are in
correspondence

(x:*, y:*, z:*, f:x->y, g: y->z)
x•

y
• z•



The theory GSeTT
. Start with describing the type dependancies : higher

dimensional shapes

. Same as Brunerie’s Type Theory and Identity types in HoTT

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t−→
A
u

change the name to emphasize directionality

. Denote GSeTT the theory with just these type constructors

. SGSeTT is the opposite of finite globular sets
For instance, the following context and globular sets are in
correspondence

(x:*, y:*, z:*, f:x->y, g: y->z)
x•

y
• z•



The theory GSeTT
. Start with describing the type dependancies : higher

dimensional shapes

. Same as Brunerie’s Type Theory and Identity types in HoTT

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t−→
A
u

change the name to emphasize directionality

. Denote GSeTT the theory with just these type constructors

. SGSeTT is the opposite of finite globular sets
For instance, the following context and globular sets are in
correspondence

(x:*, y:*, z:*, f:x->y, g: y->z)
x•

y
• z•



The theory GSeTT
. Start with describing the type dependancies : higher

dimensional shapes

. Same as Brunerie’s Type Theory and Identity types in HoTT

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t−→
A
u

change the name to emphasize directionality

. Denote GSeTT the theory with just these type constructors

. SGSeTT is the opposite of finite globular sets
For instance, the following context and globular sets are in
correspondence

(x:*, y:*, z:*, f:x->y, g: y->z)
x•

y
• z•



Ps-contexts
ps-contexts are context that represent pasting schemes

. We introduce the judgment Γ `ps to recognize them
To simplify the recognition, we require the ps-context to be in a
specific order

. Each ps-context Γ has a source ∂−Γ and a target ∂+Γ

∂−Γ • • •

Γ • • •

∂+Γ • • •

⇓
⇓



Ps-contexts
ps-contexts are context that represent pasting schemes

. We introduce the judgment Γ `ps to recognize them
To simplify the recognition, we require the ps-context to be in a
specific order

. Each ps-context Γ has a source ∂−Γ and a target ∂+Γ

∂−Γ • • •

Γ • • •

∂+Γ • • •

⇓
⇓



Ps-contexts
ps-contexts are context that represent pasting schemes

. We introduce the judgment Γ `ps to recognize them
To simplify the recognition, we require the ps-context to be in a
specific order

. Each ps-context Γ has a source ∂−Γ and a target ∂+Γ

∂−Γ • • •

Γ • • •

∂+Γ • • •

⇓
⇓



The theory CaTT
To the theory CaTT, add term constructors corresponding to the
two principle expressing that the "space" of composition of each
pasting scheme is "contractible".

. Each pasting has a composition

Γ `ps ∂−Γ ` t : A ∂+Γ ` u : A

Γ ` op
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(∂−(Γ))
Var(u : A) = Var(∂+(Γ))

. Every two compositions of the same pasting scheme are
related

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)



The theory CaTT
To the theory CaTT, add term constructors corresponding to the
two principle expressing that the "space" of composition of each
pasting scheme is "contractible".
. Each pasting has a composition

Γ `ps ∂−Γ ` t : A ∂+Γ ` u : A

Γ ` op
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(∂−(Γ))
Var(u : A) = Var(∂+(Γ))

. Every two compositions of the same pasting scheme are
related

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)



The theory CaTT
To the theory CaTT, add term constructors corresponding to the
two principle expressing that the "space" of composition of each
pasting scheme is "contractible".
. Each pasting has a composition

Γ `ps ∂−Γ ` t : A ∂+Γ ` u : A

Γ ` op
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(∂−(Γ))
Var(u : A) = Var(∂+(Γ))

. Every two compositions of the same pasting scheme are
related

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)



Applying operations and coherences

. We have explained how to compute terms in ps-contexts

. We get terms in generic context by action of substitutions
Hence relax the previous rules to have

Γ `ps ∂−Γ ` t : A ∂+Γ ` u : A ∆ ` γ : Γ

∆ ` op
Γ,t−→

A
u
[γ] : t[γ]→u[γ]

Γ `ps Γ ` t : A Γ ` u : A ∆ ` γ : Γ

∆ ` coh
Γ,t−→

A
u
[γ] : t[γ]→u[γ]

(keeping the side condition)



Applying operations and coherences

. We have explained how to compute terms in ps-contexts

. We get terms in generic context by action of substitutions
Hence relax the previous rules to have

Γ `ps ∂−Γ ` t : A ∂+Γ ` u : A ∆ ` γ : Γ

∆ ` op
Γ,t−→

A
u
[γ] : t[γ]→u[γ]

Γ `ps Γ ` t : A Γ ` u : A ∆ ` γ : Γ

∆ ` coh
Γ,t−→

A
u
[γ] : t[γ]→u[γ]

(keeping the side condition)



Examples of derivation

. Composition :
Consider the ps-context
Γc = (x : ?, y : ?, f : x→y , z : ?, g : y→z).

We have ∂−Γc = (x : ?) and ∂+Γc = (z : ?).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).

. Associativity :
Consider the ps-context
Γa = (x : ?, y : ?, f : x→y , z : ?, g : y→z ,w : ?, h : z→w).
We have the type
Γa ` comp(f , comp(g , h))→comp(comp(f , g), h).
Both sides use all the variables of Γa (some are implicit).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).



Examples of derivation

. Composition :
Consider the ps-context
Γc = (x : ?, y : ?, f : x→y , z : ?, g : y→z).
We have ∂−Γc = (x : ?) and ∂+Γc = (z : ?).

So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).

. Associativity :
Consider the ps-context
Γa = (x : ?, y : ?, f : x→y , z : ?, g : y→z ,w : ?, h : z→w).
We have the type
Γa ` comp(f , comp(g , h))→comp(comp(f , g), h).
Both sides use all the variables of Γa (some are implicit).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).



Examples of derivation

. Composition :
Consider the ps-context
Γc = (x : ?, y : ?, f : x→y , z : ?, g : y→z).
We have ∂−Γc = (x : ?) and ∂+Γc = (z : ?).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).

. Associativity :
Consider the ps-context
Γa = (x : ?, y : ?, f : x→y , z : ?, g : y→z ,w : ?, h : z→w).

We have the type
Γa ` comp(f , comp(g , h))→comp(comp(f , g), h).
Both sides use all the variables of Γa (some are implicit).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).



Examples of derivation

. Composition :
Consider the ps-context
Γc = (x : ?, y : ?, f : x→y , z : ?, g : y→z).
We have ∂−Γc = (x : ?) and ∂+Γc = (z : ?).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).

. Associativity :
Consider the ps-context
Γa = (x : ?, y : ?, f : x→y , z : ?, g : y→z ,w : ?, h : z→w).

We have the type
Γa ` comp(f , comp(g , h))→comp(comp(f , g), h).
Both sides use all the variables of Γa (some are implicit).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).



Examples of derivation

. Composition :
Consider the ps-context
Γc = (x : ?, y : ?, f : x→y , z : ?, g : y→z).
We have ∂−Γc = (x : ?) and ∂+Γc = (z : ?).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).

. Associativity :
Consider the ps-context
Γa = (x : ?, y : ?, f : x→y , z : ?, g : y→z ,w : ?, h : z→w).
We have the type
Γa ` comp(f , comp(g , h))→comp(comp(f , g), h).

Both sides use all the variables of Γa (some are implicit).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).



Examples of derivation

. Composition :
Consider the ps-context
Γc = (x : ?, y : ?, f : x→y , z : ?, g : y→z).
We have ∂−Γc = (x : ?) and ∂+Γc = (z : ?).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).

. Associativity :
Consider the ps-context
Γa = (x : ?, y : ?, f : x→y , z : ?, g : y→z ,w : ?, h : z→w).
We have the type
Γa ` comp(f , comp(g , h))→comp(comp(f , g), h).
Both sides use all the variables of Γa (some are implicit).

So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).



Examples of derivation

. Composition :
Consider the ps-context
Γc = (x : ?, y : ?, f : x→y , z : ?, g : y→z).
We have ∂−Γc = (x : ?) and ∂+Γc = (z : ?).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).

. Associativity :
Consider the ps-context
Γa = (x : ?, y : ?, f : x→y , z : ?, g : y→z ,w : ?, h : z→w).
We have the type
Γa ` comp(f , comp(g , h))→comp(comp(f , g), h).
Both sides use all the variables of Γa (some are implicit).
So we deduce the term Γc ` opΓc ,x→z : x→z (denoted comp).



The type theory CaTT

Semantics of the theory



The subcategory of ps-contexts

Define PS : the full subcategory of SCaTT whose objects are the
ps-contexts

Theorem (B., Finster, Mimram)
The category PS is equivalent to Θop

∞



The subcategory of ps-contexts

Define PS : the full subcategory of SCaTT whose objects are the
ps-contexts

Theorem (B., Finster, Mimram)
The category PS is equivalent to Θop

∞



Models of the theory

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the G.-M. weak ω-categories

SCaTT Set

PS ' Θop
∞

CwF morphism

globular sum preserving

Proved by showing the initiality theorem for the theory CaTT.



Models of the theory

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the G.-M. weak ω-categories

SCaTT Set

PS ' Θop
∞

CwF morphism

globular sum preserving

Proved by showing the initiality theorem for the theory CaTT.



Models of the theory

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the G.-M. weak ω-categories

SCaTT Set

PS ' Θop
∞

CwF morphism

globular sum preserving

Proved by showing the initiality theorem for the theory CaTT.



The syntactic category

. The category SCaTT naturally appears in our presentation
What is its significance ?

. The Yoneda embedding provides an inclusion of Sop
CaTT into its

models the weak ω-categories.
Conjecture : the syntactic category is the opposite of the
subcategory of the weak ω-categories freely by finite computads, for
an appropriate notion of computad.

. There is work conducted around this conjecture and extension
of CaTT.
Ongoing work related to this question and CaTT by Finster, Vicary,
Markakis, Rice



The syntactic category

. The category SCaTT naturally appears in our presentation
What is its significance ?

. The Yoneda embedding provides an inclusion of Sop
CaTT into its

models the weak ω-categories.
Conjecture : the syntactic category is the opposite of the
subcategory of the weak ω-categories freely by finite computads, for
an appropriate notion of computad.

. There is work conducted around this conjecture and extension
of CaTT.
Ongoing work related to this question and CaTT by Finster, Vicary,
Markakis, Rice



The syntactic category

. The category SCaTT naturally appears in our presentation
What is its significance ?

. The Yoneda embedding provides an inclusion of Sop
CaTT into its

models the weak ω-categories.
Conjecture : the syntactic category is the opposite of the
subcategory of the weak ω-categories freely by finite computads, for
an appropriate notion of computad.

. There is work conducted around this conjecture and extension
of CaTT.
Ongoing work related to this question and CaTT by Finster, Vicary,
Markakis, Rice



Thank you !



References I

Dimitri Ara.
Sur les ∞-groupoïdes de Grothendieck et une variante
∞-catégorique.
PhD thesis, Université Paris 7, 2010.

Guillaume Brunerie.
On the homotopy groups of spheres in homotopy type theory.
arXiv preprint arXiv :1606.05916, 2016.

Peter Dybjer.
Internal Type Theory.
In Types for Proofs and Programs. TYPES 1995, pages
120–134. Springer, Berlin, Heidelberg, 1996.



References II

Eric Finster and Samuel Mimram.
A Type-Theoretical Definition of Weak ω-Categories.
In 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–12, 2017.

Alexander Grothendieck.
Pursuing stacks.
Unpublished manuscript, 1983.

Tom Leinster.
Higher operads, higher categories, volume 298.
Cambridge University Press, 2004.

Georges Maltsiniotis.
Grothendieck ∞-groupoids, and still another definition of
∞-categories.
Preprint arXiv:1009.2331, 2010.


	Dependent type theories and higher structures
	Weak -categories
	The Grothendieck-Maltsiniotis definition

	The type theory CaTT
	Dependent type theories and their categorical semantics
	Presentation of the theory
	Semantics of the theory

	Thank you!

