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x  x x
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f ◦ idx = f = idy ◦f h ◦ (g ◦ f ) = (h ◦ g) ◦ f
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A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M

. A rewriting system is a category : objects = terms, morphisms = rewriting
relations.
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Categories are ubiquitous, they are notably useful for:

. Modeling functional programming (objects = types, morphisms = λ-terms)

. Encoding propositions and implications

. Defining algebraic structures

. And many other things...

Provide a common framework to study programming languages, logic and algebra�
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Motivations: When categories are insufficient
Some situation that ought to be categories

. paths in topological spaces

. Identity types in Martin-Löf type
theory

•x

•y

p

•z

q

trans:
∏

A : U ,
∏

x y z : A,
x = y → y = z → x = z

trans A x x x refl refl := refl

But: The composition is not associative

(p ∗ q) ∗ r 6= p ∗ (q ∗ r)
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Motivations: When categories are insufficient
Some situation that ought to be categories

. paths in topological spaces
. Identity types in Martin-Löf type

theory

•x

•y

p

•z

q

trans:
∏

A : U ,
∏

x y z : A,
x = y → y = z → x = z

trans A x x x refl refl := refl

The composition is associative up to homo-
topy

(p ∗ q) ∗ r ⇒ p ∗ (q ∗ r)

There is a proof term for associativity
assoc:

∏
A : U ,

∏
x y z w : A,∏

p : x = y ,
∏

q : y = z ,
∏

r : z = w ,
trans(trans p q) r = trans p (trans q r)



Higher categories

We can encode this defect into cells of higher dimension



Weak ω-categories



Globular sets
Weak ω-categories = globular sets + compositions
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With compositions
We require that these cells compose
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Everything is weak!

All the above-mentioned equalities are weak: they are equivalences
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. a type ? for objects:
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Γ ` ?
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Types for cells

In order to manipulate ω-categories, we need:
. a type ? for objects:

Γ `
Γ ` ?

. a type → for all ≥ 1-cells
Γ ` t : A Γ ` u : A

Γ ` t−→
A
u



Contexts are diagrams!
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PS-contexts

. The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment Γ `ps

. This judgment is decidable with an algorithm

x : ? `ps x : ?
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A
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Source and target
Every ps-context Γ has a source ∂−(Γ) and a target ∂+(Γ) (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target
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Interpretation

. A term Γ ` t : A corresponds to a composition of certain cells of Γ.

. Case of ps-contexts Γ `ps:

Γ ` t : A
Var(t : A) = Var(Γ)

}
t is a way of composing completely the ps-
context Γ.
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Operations and coherences
. Existence of compositions:

Every pasting scheme can be composed

. general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these associativities:
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Suspension in CaTT



A problem with CaTT

Writing in CaTT may be very tedious :

x  x x
idx x y x yf  

f

f

⇓ idf

coh id (x:*):x->x coh id2 (x:*)(y:*)(f:x->y):f->f



A problem with CaTT

Writing in CaTT may be very tedious :

x y z x zf g
 

g◦f
x y x y

f

g

h

⇓α
⇓β

 

f

h

⇓α∗β

coh comp (x:*)(y:*)(f:x->y)
(z:*)(g:y->z):x->z

coh vcomp (x:*)(y:*)(f:x->y)(g:x->y)
(a:f->g)(h:x->y)(b:g->h):f->h



A problem with CaTT

Writing in CaTT may be very tedious :

x y x yf  
f ◦idx

f

⇓ x y x y

f

g

⇓α  

f

h

idf ∗α ⇓V⇓ α

coh unitl (x:*)(y:*)(f:x->y)
:comp (id x) f -> f

coh unitl2 (x:*)(y:*)(f:x->y)(g:x->y)
(a:f->g):vcomp (id f) a -> a



A solution: the suspension

Idea: Write only the left term and let the software generate the right one.

coh id (x:*):x->x
suspension
 coh id2 (x:*)(y:*)(f:x->y):f->f

Practice: Generate the terms on the fly using the dimension of the argument.

coh id (x:*):x->x
let ex (x:*)(y:*)(f:x->y)=id f

 
coh id (x:*):x->x
coh id2 (x:*)(y:*)(f:x->y):f->f
let ex (x:*)(y:*)(f:x->y)=id2 f



Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

Σ∅ = (x0 : ?, y0 : ?) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0−→
?
y0 Σ(t−→

A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉
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?
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Well-definedness of the suspension

Σ∅ = (x0 : ∗, y0 : ∗) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0→y0 Σ(t−→
A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Theorem (B., Mimram)
The following rules are derivable

Γ `
ΣΓ `

Γ ` A

ΣΓ ` ΣA

Γ ` t : A

ΣΓ ` Σt : ΣA

∆ ` γ : Γ

Σ∆ ` Σγ : ΣΓ

Proof.
By induction over the rules of the theory
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∆ ` γ : Γ
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Proof.
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Example: A development using the suspension

coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a

Internally:

. The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2  suspend once

. Compute the suspension of unit

. Compute the suspension of comp

. compute the suspension of id
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Thank you!



Try it yourself

https://thibautbenjamin.github.io/catt/

https://thibautbenjamin.github.io/catt/
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