CaTT: A type theoretic approach to weak ω -categories

Thibaut Benjamin, Eric Finster, Samuel Mimram

23 February 2021

Seminaire LSL

Introduction

Aim

Formal Methods

verifying

Higher Dimensional Algebra

Formal Methods

Dependent Type Theory

verifying

Higher Dimensional Algebra

Weak ω -categories

Categories are made of

Categories are made of **objects**

•

Categories are made of

objects

•

arrows

ullet \longrightarrow ullet

Categories are made of

objects

arrows

ullet \longrightarrow ullet

Equipped with

Categories are made of

objects

•

arrows

ullet \longrightarrow

Equipped with

identities

$$x \rightsquigarrow x \xrightarrow{id_x} x$$

Categories are made of

objects

arrows

ullet \longrightarrow (

Equipped with

identities

$$x \rightsquigarrow x \xrightarrow{\mathsf{id}_x} x$$

compositions

$$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$$

Categories are made of

objects

•

arrows

ullet \longrightarrow

Equipped with

identities

$$x \rightsquigarrow x \xrightarrow{\mathsf{id}_x} x$$

compositions

$$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$$

Satisfying

Categories are made of

objects

•

arrows

ullet \longrightarrow (

Equipped with

identities

$$x \rightsquigarrow x \xrightarrow{\mathsf{id}_x} x$$

compositions

$$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$$

Satisfying

unitality

$$f \circ id_x = f = id_y \circ f$$

Categories are made of

objects

•

arrows

ullet \longrightarrow (

Equipped with

identities

$$x \rightsquigarrow x \xrightarrow{\mathsf{id}_x} x$$

compositions

$$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$$

Satisfying

unitality

$$f \circ \mathrm{id}_x = f = \mathrm{id}_y \circ f$$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

▶ The category of sets: objects = sets, morphisms = functions

- ▶ The category of sets: objects = sets, morphisms = functions
- ▶ The category of groups: objects = groups, morphisms = group homomorphisms

- ▶ The category of sets: objects = sets, morphisms = functions
- ▶ The category of groups: objects = groups, morphisms = group homomorphisms
- ▶ The category of vector spaces: objects = vector spaces, morphisms = linear maps

- ▶ The category of sets: objects = sets, morphisms = functions
- ▶ The category of groups: objects = groups, morphisms = group homomorphisms
- ▶ The category of metro itineraries: objects = metro stations, morphisms = metro itineraries

- ▶ The category of sets: objects = sets, morphisms = functions
- ▶ The category of groups: objects = groups, morphisms = group homomorphisms
- ▶ The category of metro itineraries: objects = metro stations, morphisms = metro itineraries
- ▶ The syntactic category of a type theory : objects = contexts, morphisms = substitutions

- ▶ The category of sets: objects = sets, morphisms = functions
- ▶ The category of groups: objects = groups, morphisms = group homomorphisms
- ▶ The category of metro itineraries: objects = metro stations, morphisms = metro itineraries
- ▶ The syntactic category of a type theory : objects = contexts, morphisms = substitutions
- \triangleright Every monoid M is a category : objects = $\{\bullet\}$, morphisms = M

- ▶ The category of sets: objects = sets, morphisms = functions
- ▶ The category of groups: objects = groups, morphisms = group homomorphisms
- ▶ The category of metro itineraries: objects = metro stations, morphisms = metro itineraries
- ▶ The syntactic category of a type theory : objects = contexts, morphisms = substitutions
- \triangleright Every monoid M is a category : objects = $\{\bullet\}$, morphisms = M
- ▶ A rewriting system is a category : objects = terms, morphisms = rewriting relations.

Categories are ubiquitous, they are notably useful for:

 \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)

- \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)
- ▶ Encoding propositions and implications

- \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)
- ▶ Encoding propositions and implications
- Defining algebraic structures

- \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)
- ▶ Encoding propositions and implications
- Defining algebraic structures
- ▶ And many other things...

Categories are ubiquitous, they are notably useful for:

- \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)
- ▶ Encoding propositions and implications
- Defining algebraic structures
- ▶ And many other things...

Provide a common framework to study programming languages, logic and algebra & Semantics

Categories are made of objects

•

arrows

ullet \longrightarrow ullet

Equipped with identities

$$x \rightsquigarrow x \xrightarrow{\mathsf{id}_x} x$$

compositions

$$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$$

Satisfying **unitality**

$$f \circ \mathrm{id}_{x} = f = \mathrm{id}_{y} \circ f$$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Categories are made of

objects

$$\frac{\Gamma \vdash}{\Gamma \vdash \star}$$

arrows

$$ullet$$
 \longrightarrow $ullet$

Equipped with identities

$$x \rightsquigarrow x \xrightarrow{\mathsf{id}_x} x$$

compositions

$$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$$

Satisfying **unitality**

$$f \circ \mathrm{id}_{x} = f = \mathrm{id}_{y} \circ f$$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Categories are made of

objects

$$\frac{\Gamma \vdash}{\Gamma \vdash \star}$$

arrows

$$\frac{\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star}{\Gamma \vdash x \rightarrow y}$$

Equipped with identities

$$x \rightsquigarrow x \xrightarrow{id_x} x$$

compositions

$$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$$

Satisfying **unitality**

$$f \circ id_x = f = id_v \circ f$$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Categories are made of

objects

$$\frac{\Gamma \vdash}{\Gamma \vdash \star}$$

arrows

$$\frac{\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

Equipped with identities

$$\frac{\Gamma \vdash x : \star}{\Gamma \vdash \mathsf{id}(x) : x \rightarrow x}$$

compositions

$$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$$

Satisfying **unitality**

$$f \circ id_x = f = id_y \circ f$$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Categories are made of

objects

$$\frac{\Gamma \vdash}{\Gamma \vdash \star}$$

arrows

$$\frac{\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

Equipped with identities

$$\frac{\Gamma \vdash x : \star}{\Gamma \vdash \mathsf{id}(x) : x \rightarrow x}$$

compositions

$$\frac{\Gamma \vdash f : x \rightarrow y \qquad \Gamma \vdash g : y \rightarrow z}{\Gamma \vdash g \circ f : x \rightarrow z}$$

Satisfying **unitality**

$$f \circ \mathrm{id}_{x} = f = \mathrm{id}_{y} \circ f$$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Categories are made of

objects

arrows

$$\frac{\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

Equipped with identities

$$\frac{\Gamma \vdash x : \star}{\Gamma \vdash \mathsf{id}(x) : x \rightarrow x}$$

compositions

$$\frac{\Gamma \vdash f : x \rightarrow y \qquad \Gamma \vdash g : y \rightarrow z}{\Gamma \vdash g \circ f : x \rightarrow z}$$

Satisfying **unitality**

$$\frac{\Gamma \vdash f : x \rightarrow y}{\Gamma \vdash f \circ id(x) \equiv f \equiv id(y) \circ f}$$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Categories are made of

objects

$$\frac{\Gamma}{\Gamma}$$

arrows

$$\frac{\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star}{\Gamma \vdash x \rightarrow y}$$

Equipped with

$$\frac{\Gamma \vdash x : \star}{\Gamma \vdash \mathsf{id}(x) : x \to x}$$

compositions

$$\frac{\Gamma \vdash f : x \rightarrow y \qquad \Gamma \vdash g : y \rightarrow z}{\Gamma \vdash g \circ f : x \rightarrow z}$$

Satisfying unitality

$$\frac{\Gamma \vdash f : x \rightarrow y}{\Gamma \vdash f \circ id(x) \equiv f \equiv id(y) \circ f}$$

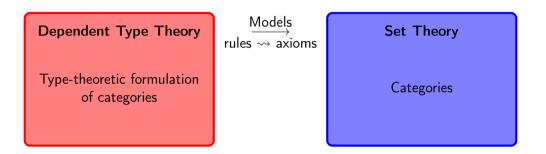
$$\frac{\Gamma \vdash f : x \to y}{\operatorname{id}(x) \equiv f \equiv \operatorname{id}(y) \circ f} \qquad \frac{\Gamma \vdash f : x \to y \qquad \Gamma \vdash g : y \to z \qquad \Gamma \vdash h : z \to w}{\Gamma \vdash h \circ (g \circ f) \equiv (h \circ g) \circ f}$$

Semantics

Dependent Type Theory
rules → axioms

Set Theory

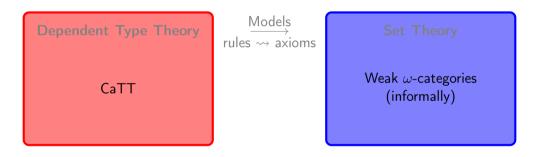
Semantics



Theorem

The models of the type-theoretic formulation of categories are the categories.

In this presentation



In this presentation

Dependent Type Theory

CaTT

↑

Suspension

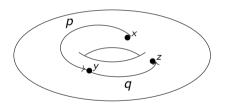
Models

rules → axioms

Weak ω-categories (informally)

Some situation that ought to be categories

▶ paths in topological spaces

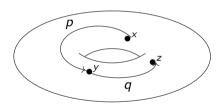


But: The composition is not associative

$$(p*q)*r \neq p*(q*r)$$

Some situation that ought to be categories

▶ paths in topological spaces



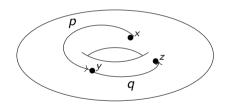
The composition is associative up to homotopy

$$(p*q)*r \Rightarrow p*(q*r)$$

Some situation that ought to be categories

▶ paths in topological spaces

▶ Identity types in Martin-Löf type theory



trans:
$$\prod A : \mathcal{U}$$
, $\prod x \ y \ z : A$,
 $x = y \rightarrow y = z \rightarrow x = z$
trans $A \times x \times refl \ refl := refl$

The composition is associative up to homotopy

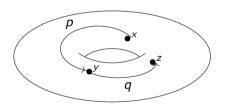
$$(p*q)*r \Rightarrow p*(q*r)$$

But: Transitivity is not associative

 $trans(trans p q) r \not\equiv trans p (trans q r)$

Some situation that ought to be categories

▶ paths in topological spaces



The composition is associative up to homotopy

$$(p*q)*r \Rightarrow p*(q*r)$$

▶ Identity types in Martin-Löf type theory

There is a proof term for associativity assoc: $\prod A: \mathcal{U}, \prod x y z w : A,$ $\prod p: x = y, \prod q: y = z, \prod r: z = w,$ trans(trans $p \ q$) r = trans p (trans $q \ r$)

Higher categories

We can encode this defect into cells of higher dimension

Weak ω -categories

Weak ω -categories = globular sets + compositions

A globular set is composed of

▷ points (or objects) : •

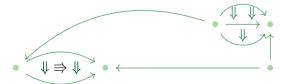
- ▷ points (or objects) : •
- ightharpoonup arrows (or 1-cells) : ullet \longrightarrow ullet

- ▷ points (or objects) : •
- ightharpoonup arrows (or 1-cells) : \longrightarrow •
- ▶ 2-cells : ↓ •

- ▷ points (or objects) : •
- \triangleright arrows (or 1-cells) : $\bullet \longrightarrow \bullet$
- ▶ 2-cells : ↓ •

- ▷ points (or objects) : •
- ightharpoonup arrows (or 1-cells) : \longrightarrow •
- ▶ 2-cells : ↓ .
- \triangleright 3-cells: \bullet \Downarrow \Rightarrow \Downarrow \bullet
- ▶ etc

- ▷ points (or objects) : •
- ightharpoonup arrows (or 1-cells) : \longrightarrow •
- ▶ 2-cells : ↓ .
- \triangleright 3-cells: \bullet \Downarrow \Rightarrow \Downarrow
- ▶ etc



We require that these cells compose

- We require that these cells compose
 - Arrows:

$$\stackrel{\times}{\bullet} \stackrel{f}{\longrightarrow} \stackrel{y}{\bullet} \stackrel{g}{\longrightarrow} \stackrel{z}{\bullet}$$

We require that these cells compose

Arrows:

$$\stackrel{\times}{\bullet} \stackrel{f}{\longrightarrow} \stackrel{y}{\bullet} \stackrel{g}{\longrightarrow} \stackrel{z}{\bullet} \stackrel{\cdots}{\longrightarrow} \stackrel{\times}{\bullet} \stackrel{g \circ f}{\longrightarrow} \stackrel{z}{\bullet}$$

We require that these cells compose

Arrows:

$$\stackrel{\times}{\bullet} \stackrel{f}{\longrightarrow} \stackrel{y}{\bullet} \stackrel{g}{\longrightarrow} \stackrel{z}{\bullet} \stackrel{\cdots}{\longrightarrow} \stackrel{\times}{\bullet} \stackrel{g \circ f}{\longrightarrow} \stackrel{z}{\bullet}$$

▶ 2-cells:

Vertical composition

$$\begin{array}{c}
f \\
\downarrow \alpha \\
\downarrow g \\
h
\end{array}$$

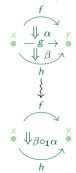
We require that these cells compose

Arrows:

$$\stackrel{\times}{\bullet} \stackrel{f}{\longrightarrow} \stackrel{y}{\bullet} \stackrel{g}{\longrightarrow} \stackrel{z}{\bullet} \stackrel{\cdots}{\longrightarrow} \stackrel{\times}{\bullet} \stackrel{g \circ f}{\longrightarrow} \stackrel{z}{\bullet}$$

▶ 2-cells:

Vertical composition

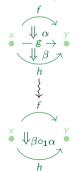


We require that these cells compose

Arrows:

▶ 2-cells:

Vertical composition



We require that these cells compose

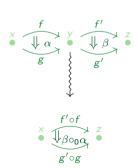
Arrows:

$$\stackrel{\times}{\bullet} \stackrel{f}{\longrightarrow} \stackrel{y}{\bullet} \stackrel{g}{\longrightarrow} \stackrel{z}{\bullet} \stackrel{\cdots}{\longrightarrow} \stackrel{\times}{\bullet} \stackrel{g \circ f}{\longrightarrow} \stackrel{z}{\bullet}$$

▶ 2-cells:

Vertical composition

$\begin{array}{c} f \\ \downarrow \alpha \\ \downarrow \beta \\ \downarrow \beta \\ h \\ \downarrow \\ f \\ \downarrow \beta \\ \downarrow \beta \\ \uparrow \\ \downarrow \beta \\ \downarrow$



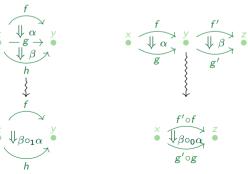
We require that these cells compose

Arrows:

$$\stackrel{\times}{\bullet} \stackrel{f}{\longrightarrow} \stackrel{y}{\bullet} \stackrel{g}{\longrightarrow} \stackrel{z}{\bullet} \stackrel{\cdots}{\longrightarrow} \stackrel{\times}{\bullet} \stackrel{g \circ f}{\longrightarrow} \stackrel{z}{\bullet}$$

▶ 2-cells:

Vertical composition



The compositions are required to be associative

The compositions are required to be associative

▶ Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow ullet

The compositions are required to be associative

Arrows:

The compositions are required to be associative

Arrows:

ullet \longrightarrow ullet \longrightarrow \longrightarrow \longrightarrow \longrightarrow

▶ 2-cells:

Vertical composition

The compositions are required to be associative

Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow ullet

▶ 2-cells:

Vertical composition

The compositions are required to be associative

Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow ullet

▶ 2-cells:

Vertical composition

Horizontal composition

The compositions are required to be associative

Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow ullet

▶ 2-cells:

Vertical composition

Horizontal composition

The compositions are required to be associative

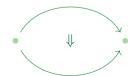
Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow

▶ 2-cells:

Vertical composition

Horizontal composition



The compositions are required to be associative

Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow ullet

▶ 2-cells:

Vertical composition

Horizontal composition

The compositions are required to be associative

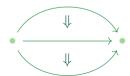
Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow ullet

▶ 2-cells:

Vertical composition

Horizontal composition



The compositions are required to be associative

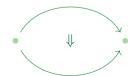
Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow

▶ 2-cells:

Vertical composition

Horizontal composition



The compositions are required to be associative

Arrows:

ullet \longrightarrow ullet \longrightarrow ullet \longrightarrow ullet

▶ 2-cells:

Vertical composition

Horizontal composition

The compositions are required to be associative

Arrows:

▶ 2-cells:

Vertical composition

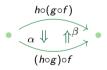
Horizontal composition

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences



Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully composed

They are well-ordered and do not have any hole

Pasting schemes

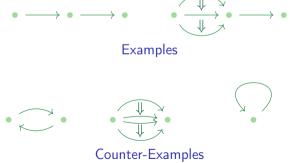
The pasting schemes are the globular set that have one unambiguous way of being fully composed

They are well-ordered and do not have any hole

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully composed

They are well-ordered and do not have any hole



The Grothendieck-Maltsiniotis definition

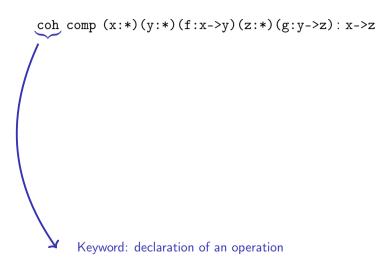
▶ Existence of compositions: Every pasting scheme can be composed

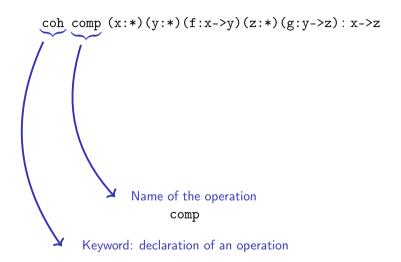
The Grothendieck-Maltsiniotis definition

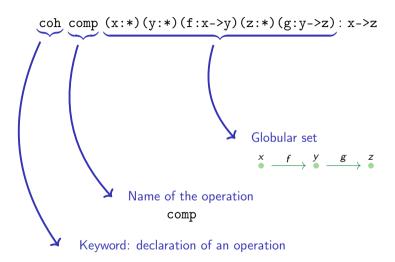
- ▶ Existence of compositions: Every pasting scheme can be composed
- ▷ Generalized "Associativities": Any two ways of composing a same pasting scheme are related by a higher cell

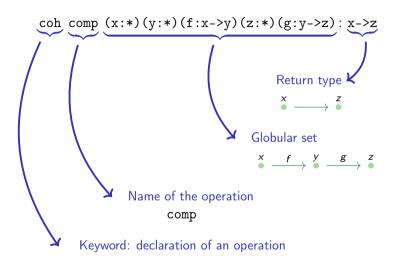
The type theory CaTT

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z









coh comp
$$(x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z$$

Composition of two arrows

coh comp
$$(x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z$$

Composition of two arrows

coh id
$$(x:*)$$
: $x->x$

coh comp
$$(x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z$$

Composition of two arrows

coh id
$$(x:*): x->x$$

Identity of an object

In order to manipulate ω -categories, we need:

In order to manipulate ω -categories, we need:

▶ a type ★ for objects:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star}$$

In order to manipulate ω -categories, we need:

- ▶ a type ★ for objects:
- ightharpoonup a type ightarrow for arrows:

$$\frac{\Gamma \vdash t : \star \qquad \Gamma \vdash u : \star}{\Gamma \vdash t \to u}$$

In order to manipulate ω -categories, we need:

- ▷ a type * for objects:
- \triangleright a type \rightarrow for arrows:

$$\frac{\Gamma \vdash t : \star \qquad \Gamma \vdash u : \star}{\Gamma \vdash t \to u}$$

 \triangleright a type \Rightarrow for 2-cells:

$$\frac{\Gamma \vdash f : t \rightarrow u \qquad \Gamma \vdash g : t \rightarrow u}{\Gamma \vdash f \Rightarrow g}$$

In order to manipulate ω -categories, we need:

- ▶ a type ★ for objects:
- \triangleright a type \rightarrow for arrows:

$$\frac{\Gamma \vdash t : \star \qquad \Gamma \vdash u : \star}{\Gamma \vdash t \to u}$$

 \triangleright a type \Rightarrow for 2-cells:

$$\frac{\Gamma \vdash f : t \rightarrow u \qquad \Gamma \vdash g : t \rightarrow u}{\Gamma \vdash f \Rightarrow g}$$

▶ etc

In order to manipulate ω -categories, we need:

- ▷ a type ★ for objects:
- riangleright a type o for all \geq 1-cells

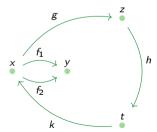
$$\frac{\Gamma \vdash}{\Gamma \vdash \star}$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{A} u}$$

Contexts are diagrams!

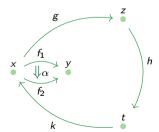
Contexts are diagrams!

$$\Gamma \left\{ egin{array}{lll} x:\star, & y:\star, & z:\star, & t:\star \ f_1:x & \mapsto & f_2:x & \mapsto & y, & g:x & \mapsto & z, & h:z & \mapsto & t, & k:t & \mapsto & x \ \end{array}
ight.$$



Contexts are diagrams!

$$\Gamma \left\{ egin{array}{lll} x:\star, & y:\star, & z:\star, & t:\star \ f_1:x & y, & f_2:x & y, & g:x & z, & h:z & t, & k:t & x \ lpha:f_1 & & f_2 & & x & x \end{array}
ight.$$



PS-contexts

▶ The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment $\Gamma \vdash_{\mathsf{ps}}$

PS-contexts

▶ The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment $\Gamma \vdash_{ps}$

▶ This judgment is decidable with an algorithm

$$\frac{\Gamma \vdash_{ps} x : A}{x : \star \vdash_{ps} x : \star}$$

$$\frac{\Gamma \vdash_{ps} f : x \xrightarrow{A} y}{\Gamma \vdash_{ps} f : x \xrightarrow{A} y}$$

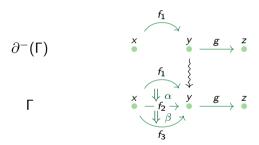
$$\frac{\Gamma \vdash_{ps} f : x \xrightarrow{A} y}{\Gamma \vdash_{ps} y : A}$$

$$\frac{\Gamma \vdash_{ps} x : \star}{\Gamma \vdash_{ps}}$$

Every ps-context Γ has a source $\partial^-(\Gamma)$ and a target $\partial^+(\Gamma)$ (which are ps-contexts themselves)

Every ps-context Γ has a source $\partial^-(\Gamma)$ and a target $\partial^+(\Gamma)$ (which are ps-contexts themselves)

Every ps-context Γ has a source $\partial^-(\Gamma)$ and a target $\partial^+(\Gamma)$ (which are ps-contexts themselves)



Every ps-context Γ has a source $\partial^-(\Gamma)$ and a target $\partial^+(\Gamma)$ (which are ps-contexts themselves)

$$\partial^{-}(\Gamma) \qquad \qquad \stackrel{f_{1}}{\underset{f_{3}}{\swarrow}} \qquad \stackrel{g}{\underset{\sigma}{\longrightarrow}} \stackrel{z}{\underset{\sigma}{\longrightarrow}} \qquad \stackrel{f_{1}}{\underset{\sigma}{\longrightarrow}} \qquad \stackrel{f_{2}}{\underset{\sigma}{\longrightarrow}} \qquad \stackrel{g}{\underset{\sigma}{\longrightarrow}} \stackrel{z}{\underset{\sigma}{\longrightarrow}} \qquad \stackrel{g}{\underset{\sigma}{\longrightarrow}} \stackrel{z}{\longrightarrow} \qquad \stackrel{g}{\underset{\sigma}{\longrightarrow}} \stackrel{z}{\longrightarrow} \qquad \stackrel{g}{\underset{\sigma}{\longrightarrow}} \stackrel{z}{\longrightarrow} \qquad \stackrel{g}{\longrightarrow} \stackrel{g}{\longrightarrow} \stackrel{z}{\longrightarrow} \qquad \stackrel{g}{\longrightarrow} \stackrel{g}{\longrightarrow} \stackrel{z}{\longrightarrow} \qquad \stackrel{g}{\longrightarrow} \stackrel{g}{\longrightarrow}$$

Interpretation

 \triangleright A term $\Gamma \vdash t : A$ corresponds to a composition of certain cells of Γ .

Interpretation

 \triangleright A term $\Gamma \vdash t : A$ corresponds to a composition of certain cells of Γ .

 \triangleright Case of ps-contexts $\Gamma \vdash_{ps}$:

$$\Gamma \vdash t : A$$
 $Var(t : A) = Var(\Gamma)$

 $\Gamma \vdash t : A$ t is a way of composing completely the ps-var(t : A) = Var(Γ) t is a way of composing completely the ps-

▷ Existence of compositions: Every pasting scheme can be composed

▶ Existence of compositions: Every pasting scheme can be composed

Rule for generating these compositions:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \partial^{-}(\Gamma) \vdash t : A \quad \partial^{+}(\Gamma) \vdash u : A}{\Gamma \vdash \mathsf{op}_{\Gamma, t \xrightarrow{\Delta} u} : t \xrightarrow{A} u} \quad \mathsf{Var}(t : A) = \mathsf{Var}(\partial^{-}(\Gamma))$$

Existence of compositions:Every pasting scheme can be composed

Rule for generating these compositions:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \partial^{-}(\Gamma) \vdash t : A \quad \partial^{+}(\Gamma) \vdash u : A}{\Gamma \vdash \mathsf{op}_{\Gamma, t \xrightarrow{} u} : t \xrightarrow{} u} \quad \mathsf{Var}(t : A) = \mathsf{Var}(\partial^{-}(\Gamma))$$
$$\mathsf{Var}(u : A) = \mathsf{Var}(\partial^{+}(\Gamma))$$

$$\Gamma = x : \star, y : \star, f : x \xrightarrow{\star} y, z : \star, g : y \xrightarrow{\star} z$$
$$\Gamma \vdash \text{comp} : x \rightarrow z$$

Example

- Existence of compositions:Every pasting scheme can be composed
- □ general "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Operations and coherences

- ▶ Existence of compositions: Every pasting scheme can be composed
- □ general "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Rule for generating these associativities:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash \mathsf{coh}_{\Gamma, t \xrightarrow{A} u} : t \xrightarrow{A} u} \quad \mathsf{Var}(t : A) = \mathsf{Var}(\Gamma)$$

$$\mathsf{Var}(u : A) = \mathsf{Var}(\Gamma)$$

Operations and coherences

- ▶ Existence of compositions: Every pasting scheme can be composed
- peneral "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Rule for generating these associativities:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash \mathsf{coh}_{\Gamma, t \to u} : t \xrightarrow{A} u} \quad \mathsf{Var}(t : A) = \mathsf{Var}(\Gamma)$$

$$\Gamma = x : \star, y : \star, f : x \xrightarrow{\star} y, z : \star, g : y \xrightarrow{\star} z, w : \star, h : z \xrightarrow{\star} w$$
$$\Gamma \vdash \text{assoc} : \text{comp f (comp g h)} \rightarrow \text{comp (comp f g) h}$$

Suspension in CaTT

A problem with CaTT

Writing in CaTT may be very tedious:

$$x \rightsquigarrow x \xrightarrow{\mathsf{id}_x} x$$

$$coh id (x:*):x->x$$

$$x \xrightarrow{f} y \rightsquigarrow x \underbrace{\downarrow id_{f}}_{f} y$$

$$coh id2 (x:*)(y:*)(f:x->y):f->f$$

coh id2
$$(x:*)(y:*)(f:x->y):f->f$$

A problem with CaTT

Writing in CaTT may be very tedious :

$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{w} x \xrightarrow{g \circ f} z \qquad x \xrightarrow{f} y \xrightarrow{h} y \xrightarrow{h} y$$

coh comp
$$(x:*)(y:*)(f:x->y)$$

 $(z:*)(g:y->z):x->z$

$$x \xrightarrow{f} y \xrightarrow{g \to y} y \longrightarrow x \xrightarrow{h} y$$

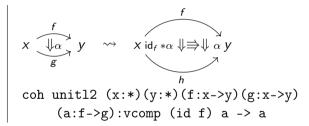
$$coh \ vcomp \ (x:*) (y:*) (f:x->y) (g:x->y)$$

$$(a:f->g) (h:x->y) (b:g->h) :f->h$$

A problem with CaTT

Writing in CaTT may be very tedious:

$$x \xrightarrow{f} y \rightsquigarrow x \xrightarrow{f \circ id_x} y$$



A solution: the suspension

Idea: Write only the left term and let the software generate the right one.

coh id
$$(x:*):x->x$$
 $\stackrel{\text{suspension}}{\sim}$ $\text{coh id2 } (x:*)(y:*)(f:x->y):f->f$

Practice: Generate the terms on the fly using the dimension of the argument.

```
coh id (x:*):x->x

let ex (x:*)(y:*)(f:x->y)=id f

coh id (x:*):x->x

coh id2 (x:*)(y:*)(f:x->y):f->f

let ex (x:*)(y:*)(f:x->y)=id2 f
```

$$\Sigma \varnothing = (x_0 : \star, y_0 : \star)$$
 $\Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$

$$\Sigma \varnothing = (x_0 : \star, y_0 : \star) \qquad \qquad \Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$$

$$\Sigma \star = x_0 \underset{\star}{\rightarrow} y_0 \qquad \qquad \Sigma(t \underset{\Delta}{\rightarrow} u) = \Sigma t \underset{\Sigma A}{\longrightarrow} \Sigma u$$

$$\Sigma \varnothing = (x_0 : \star, y_0 : \star) \qquad \qquad \Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$$

$$\Sigma \star = x_0 \underset{\star}{\longrightarrow} y_0 \qquad \qquad \Sigma(t \underset{A}{\longrightarrow} u) = \Sigma t \underset{\Sigma A}{\longrightarrow} \Sigma u$$

$$\Sigma x = x \qquad \qquad \Sigma(\cosh_{\Gamma, A}[\gamma]) = \cosh_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma]$$

$$\Sigma \varnothing = (x_0 : \star, y_0 : \star) \qquad \qquad \Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$$

$$\Sigma \star = x_0 \underset{\star}{\rightarrow} y_0 \qquad \qquad \Sigma(t \underset{A}{\rightarrow} u) = \Sigma t \underset{\Sigma A}{\longrightarrow} \Sigma u$$

$$\Sigma x = x \qquad \qquad \Sigma(\cosh_{\Gamma, A}[\gamma]) = \cosh_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma]$$

$$\Sigma(\langle \rangle) = \langle x_0 \mapsto x_0, y_0 \mapsto y_0 \rangle \qquad \qquad \Sigma(\langle \gamma, x \mapsto t \rangle) = \langle \Sigma \gamma, x \mapsto \Sigma t \rangle$$

Illustration

On contexts:

Γ	ΣΓ
× •	$\stackrel{x_0}{\bullet} \xrightarrow{} \stackrel{y_0}{\bullet}$
(x: *)	$(x_0:\star,y_0:\star,x:x_0\underset{\star}{\longrightarrow}y_0)$

Illustration

On contexts:

Γ	ΣΓ
X •	$\stackrel{x_0}{\bullet} \stackrel{x}{\longrightarrow} \stackrel{y_0}{\bullet}$
(x: *)	$(x_0:\star,y_0:\star,x:x_0\underset{\star}{\longrightarrow}y_0)$
x • ↓ f • y	x_0 y_0
$(x:\star,y:\star,f:x\underset{\star}{\rightarrow}y)$	$(x_0: \star, y_0: \star, x: x_0 \to y_0, y: x_0 \to y_0, f: x \to y)$

Well-definedness of the suspension

$$\Sigma \varnothing = (x_0 : *, y_0 : *) \qquad \Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$$

$$\Sigma \star = x_0 \to y_0 \qquad \Sigma(t \xrightarrow{A} u) = \Sigma t \xrightarrow{\Sigma A} \Sigma u$$

$$\Sigma x = x \qquad \Sigma(\cosh_{\Gamma, A}[\gamma]) = \cosh_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma]$$

$$\Sigma(\langle \rangle) = \langle x_0 \mapsto x_0, y_0 \mapsto y_0 \rangle \qquad \Sigma(\langle \gamma, x \mapsto t \rangle) = \langle \Sigma \gamma, x \mapsto \Sigma t \rangle$$

Well-definedness of the suspension

$$\Sigma \varnothing = (x_0 : *, y_0 : *) \qquad \Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$$

$$\Sigma \star = x_0 \to y_0 \qquad \Sigma(t \xrightarrow{A} u) = \Sigma t \xrightarrow{\Sigma A} \Sigma u$$

$$\Sigma x = x \qquad \Sigma(\cosh_{\Gamma, A}[\gamma]) = \cosh_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma]$$

$$\Sigma(\langle \rangle) = \langle x_0 \mapsto x_0, y_0 \mapsto y_0 \rangle \qquad \Sigma(\langle \gamma, x \mapsto t \rangle) = \langle \Sigma \gamma, x \mapsto \Sigma t \rangle$$

Theorem (B., Mimram)

The following rules are derivable

$$\frac{\Gamma \vdash}{\Sigma \Gamma \vdash} \qquad \frac{\Gamma \vdash A}{\Sigma \Gamma \vdash \Sigma A} \qquad \frac{\Gamma \vdash t : A}{\Sigma \Gamma \vdash \Sigma t : \Sigma A} \qquad \frac{\Delta \vdash \gamma : \Gamma}{\Sigma \Delta \vdash \Sigma \gamma : \Sigma \Gamma}$$

Well-definedness of the suspension

$$\Sigma \varnothing = (x_0 : *, y_0 : *) \qquad \Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$$

$$\Sigma \star = x_0 \to y_0 \qquad \Sigma(t \xrightarrow{A} u) = \Sigma t \xrightarrow{\Sigma A} \Sigma u$$

$$\Sigma x = x \qquad \Sigma(\cosh_{\Gamma, A}[\gamma]) = \cosh_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma]$$

$$\Sigma(\langle \rangle) = \langle x_0 \mapsto x_0, y_0 \mapsto y_0 \rangle \qquad \Sigma(\langle \gamma, x \mapsto t \rangle) = \langle \Sigma \gamma, x \mapsto \Sigma t \rangle$$

Theorem (B., Mimram)

The following rules are derivable

$$\frac{\Gamma \vdash}{\Sigma \Gamma \vdash} \qquad \frac{\Gamma \vdash A}{\Sigma \Gamma \vdash \Sigma A} \qquad \frac{\Gamma \vdash t : A}{\Sigma \Gamma \vdash \Sigma t : \Sigma A} \qquad \frac{\Delta \vdash \gamma : \Gamma}{\Sigma \Delta \vdash \Sigma \gamma : \Sigma \Gamma}$$

Proof.

By induction over the rules of the theory


```
coh id (x:*):x->x

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

```
coh id (x:*):x->x

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

```
coh id (x:*):x->x

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

Internally:

The system computes the difference in the dimension of the argument
 unit expects an argument of dimension 1,a is of dimension 2 → suspend once

```
coh id (x:*):x->x

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

- The system computes the difference in the dimension of the argument
 unit expects an argument of dimension 1,a is of dimension 2 → suspend once
- ▷ Compute the suspension of unit

```
coh id (x:*):x->x

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

- The system computes the difference in the dimension of the argument
 unit expects an argument of dimension 1,a is of dimension 2 → suspend once
- ▷ Compute the suspension of unit
- ▷ Compute the suspension of comp

```
coh id (x:*):x->x

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

- The system computes the difference in the dimension of the argument
 unit expects an argument of dimension 1,a is of dimension 2 → suspend once
- ▷ Compute the suspension of unit
- ▶ Compute the suspension of comp
- ▷ compute the suspension of id

Thank you!

Try it yourself

https://thibautbenjamin.github.io/catt/