CaTT: A type theoretic approach to weak w-categories

Thibaut Benjamin, Eric Finster, Samuel Mimram

23 February 2021

Seminaire LSL

Introduction

\im
verifying
—

DHa

\im
verifying
—

DHa

Motivations: A bit of category theory

Categories are made of

Motivations: A bit of category theory

Categories are made of

objects
[]

Motivations: A bit of category theory

Categories are made of

objects arrows
[] e —— o

Motivations: A bit of category theory

Categories are made of

objects arrows
[] e —— o

Equipped with

Categories are made of

objects
[]

Equipped with

identities

idx
X~ X — X

Motivations: A bit of category theory

arrows
e — o

Categories are made of

objects
[]

Equipped with

identities

idx
X~ X — X

Motivations: A bit of category theory

arrows
e — o

compositions

f g gof
X——>y ——>2Z ~» X — Z

Categories are made of

objects
[]

Equipped with
identities

idx
X~ X — X

Satisfying

Motivations: A bit of category theory

arrows
e — o

compositions

f g gof
X——>y ——>2Z ~» X — Z

Categories are made of

objects
[]

Equipped with
identities
X~ X % X
Satisfying

unitality
foidy = f =idy of

Motivations: A bit of category theory

arrows
e — o

compositions

f g gof
X——>y ——>2Z ~» X — Z

Categories are made of

objects
[]

Equipped with
identities
X~ X —F
Satisfying

unitality
foidy = f =idy of

Motivations: A bit of category theory

arrows
e — o

compositions

f g gof
X——>y ——>2Z ~» X — Z

associativity
ho(gof)=(hog)of

A few example of categories

> The category of sets: objects = sets, morphisms = functions

A few example of categories

> The category of sets: objects = sets, morphisms = functions

> The category of groups: objects = groups, morphisms = group homomorphisms

A few example of categories

> The category of sets: objects = sets, morphisms = functions
> The category of groups: objects = groups, morphisms = group homomorphisms

> The category of vector spaces: objects = vector spaces, morphisms = linear maps

A few example of categories

> The category of sets: objects = sets, morphisms = functions
> The category of groups: objects = groups, morphisms = group homomorphisms
> The category of vector spaces: objects = vector spaces, morphisms = linear maps

> The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

A few example of categories

The category of sets: objects = sets, morphisms = functions
The category of groups: objects = groups, morphisms = group homomorphisms
The category of vector spaces: objects = vector spaces, morphisms = linear maps

The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

A few example of categories

The category of sets: objects = sets, morphisms = functions
The category of groups: objects = groups, morphisms = group homomorphisms
The category of vector spaces: objects = vector spaces, morphisms = linear maps

The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

Every monoid M is a category : objects = {e}, morphisms = M

A few example of categories

The category of sets: objects = sets, morphisms = functions
The category of groups: objects = groups, morphisms = group homomorphisms
The category of vector spaces: objects = vector spaces, morphisms = linear maps

The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

Every monoid M is a category : objects = {e}, morphisms = M

A rewriting system is a category : objects = terms, morphisms = rewriting
relations.

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:

> Modeling functional programming (objects = types, morphisms = A-terms)

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)

> Encoding propositions and implications

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)
> Encoding propositions and implications

> Defining algebraic structures

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)
> Encoding propositions and implications
> Defining algebraic structures

> And many other things...

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)
> Encoding propositions and implications
> Defining algebraic structures
> And many other things...

Provide a common framework to study programming languages, logic and algebra
L Semantics

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
[] e — o

Equipped with

identities compositions
idx f g gof
X~ X — X X*)_)/*)ZWX*)Z
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
(e e — e
=%

Equipped with

identities compositions
idx f g gof
X~ X — X X*)_)/*)ZWX*)Z
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x
=% = x—y

Equipped with

identities compositions
idx f g gof
X~~~ X — X X*)_)/*)ZWX*)Z
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x
=% = x—y

Equipped with

identities compositions
: f
r'_X-* X*f>yL>ZWXL>Z
IEid(x) : x—x
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x

[[Xx—=y
Equipped with

identities compositions

MN=x:% MN=f:x—y N-g:y—z

IEid(x) : x—x NFgof:x—z
Satisfying

unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing
Categories are made of
objects

(I
M=%

Equipped with
identities
M x:%

IEid(x) : x—x

Satisfying
unitality
M=f:x—y

. Type theoretic formulation of categories

arrows
MNEx:% M=y %
M= x—y

compositions
M=f:x—y Fg:y—z

[Fgof:x—z

associativity
ho(gof)=(hog)of

N=foid(x)=f=id(y)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x

[[Xx—=y
Equipped with

identities compositions

MN=x:% MN=f:x—y N-g:y—z

IEid(x) @ x—x NFgof:x—z
Satisfying

unitality associativity

=1 x>y M=f:x—y Fg:y—z =h:z-w

N=foid(x)=f=id(y)of l-ho(gof)=(hog)of

Models
Ry antic

rules ~ axioms

DHa

Semantics

Models
—

rules ~~ axioms

Theorem

The models of the type-theoretic formulation of categories are the categories.

In this presentation

Models
—

rules ~~ axioms

DA

In this presentation

Models
—

rules ~~ axioms

DA

Motivations: When categories are insufficient
Some situation that ought to be categories

> paths in topological spaces

But: The composition is not associative

(pxq)srpr(qer)

Motivations: When categories are insufficient
Some situation that ought to be categories

> paths in topological spaces

The composition is associative up to homo-

topy
(pxq)xr=px(qgxr)

Motivations: When categories are insufficient
Some situation that ought to be categories
> ldentity types in Martin-Lof type

> paths in topological
paths in topological spaces theory

trans: [[A:U, [[xy z: A,
X=y—=>y=zZ>3X=2
trans A x x x refl refl := refl

The composition is associative up to homo- But: Transitivity is not associative

topy
(p*q)%r=p*(qg*r) trans(trans p q) r # trans p (trans q r)

Motivations: When categories are insufficient
Some situation that ought to be categories

> ldentity types in Martin-Lof type

> paths in topological
paths in topological spaces theory

trans: [[A:U, [[xy z: A,
X=y—=>y=zZ>3X=2
trans A x x x refl refl := refl

There is a proof term for associativity
The composition is associative up to homo- jqq0c- [TA:U [xyzw:A,

topy [Ilp:x=y, [lg:y=2z [lr:z=w,
(p*q)xr=px(q=*r) trans(trans p q) r = trans p (trans q r)

Higher categories

We can encode this defect into cells of higher dimension

Weak w-categories

Globular sets

Weak w-categories = globular sets + compositions

Globular sets
A globular set is composed of

> points (or objects) :

Globular sets
A globular set is composed of
> points (or objects) :
> arrows (or 1-cells) : « ——

Globular sets

A globular set is composed of

> points (or objects) :

> arrows (or 1-cells) : « ——
> 2-cells : /l?
~

Globular sets
A globular set is composed of

> points (or objects) :

> arrows (or 1-cells) : « ——
> 2-cells : /l_L\’L

~
> 3-cells : /i};il\

v

Globular sets
A globular set is composed of

> points (or objects) :

> arrows (or 1-cells) : « ——

> 2-cells : /l_L\’L
~
/\

> 3-cells : = |
b

> etc

Globular sets
A globular set is composed of

> points (or objects) :

> arrows (or 1-cells) : « ——

> 2-cells : /F
~
m

> 3-cells : =
U

> etc
T P
—
f \UT
«E>

With compositions
We require that these cells compose

With compositions
We require that these cells compose
> Arrows:

With compositions
We require that these cells compose
> Arrows:

of

With compositions
We require that these cells compose
> Arrows:

of

> 2-cells:

Vertical composition

With compositions

We require that these cells compose

> Arrows:
f of
> 2-cells:

Vertical composition

f
Y
I a

—g—

N
h
H
f

U‘ﬁola
N N

h

With compositions
We require that these cells compose

> Arrows:
of
> 2-cells:
Vertical composition Horizontal composition
f
? f f!
(e}
S DR
NP, AT

:

U‘ﬁola
N N

h

With compositions
We require that these cells compose

> Arrows:
f g gof
> 2-cells:
Vertical composition Horizontal composition
f
m f f/
U’ <« 7 -
5 S v Lo
\‘U’_B/\ g g’
h
f
Y flof
4
Uﬁola @

_/\ g’og

h

With compositions
We require that these cells compose

> Arrows:
f g gof
> 2-cells:
Vertical composition Horizontal composition
f
m f f/
| a T -
5 S v Lo
\‘U’_B/\ g g’
h
f
Y flof
4
Uﬁola @
_/\ g’Og

h
> etc

Satisfying associativity

The compositions are required to be associative

Satisfying associativity
The compositions are required to be associative
> Arrows:

Satisfying associativity
The compositions are required to be associative
> Arrows: ’ R

The compositions are required to be associative
> Arrows:

Satisfying associativity

> 2-cells:

Vertical composition

Y
T

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
//ﬂ\)\ — / —

~ 1 @~ 1 ~" =

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

/D/l—i\
NN

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

/ﬁ\
NS

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
//ﬂ\)\ — / —

~ 1 @~ 1 ~" =

Exchange law

TN

—_—

Ny S

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

/ﬁ\
NS

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

> etc

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

ho(gof)

/—\

B
b 12

(hog)of

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

Examples

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

IR,
— e —— — e ——
N
Examples
—. a4
_ — \U

Counter-Examples

The Grothendieck-Maltsiniotis definition

> Existence of compositions:
Every pasting scheme can be composed

The Grothendieck-Maltsiniotis definition

> Existence of compositions:
Every pasting scheme can be composed

> Generalized “Associativities™
Any two ways of composing a same pasting scheme are related by a higher cell

The type theory CaTT

First Examples

coh comp (x:*) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

First Examples

coh comp (x:*) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

~~
< Keyword: declaration of an operation

First Examples

&o/h/ comp (x:%) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

Name of the operation
comp

Keyword: declaration of an operation

First Examples

&o/h/ comp (x:%) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

~~

Globular set

x f Yy &g z
— —

Name of the operation
comp

Keyword: declaration of an operation

First Examples

&O’IL comp (x:%) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

Return type ‘/

X z
Globular set
X f y g z
—_— e —

Name of the operation
comp

Keyword: declaration of an operation

First Examples

coh comp (x:*) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

X f y g z X comp f g z
_—

Composition of two arrows

First Examples

coh comp (x:*) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

X f y g z X comp f g z
_—

Composition of two arrows

coh id (x:*) : =x->x

First Examples

coh comp (x:*) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

X f y g z X comp f g z
_—

Composition of two arrows

coh id (x:*) : =x->x

Identity of an object

Types for cells

In order to manipulate w-categories, we need:

Types for cells

In order to manipulate w-categories, we need:

> a type - for objects:
re

re

Types for cells

In order to manipulate w-categories, we need:

> a type - for objects:
re

M
> a type — for arrows:

M-t M+ u:
M- t—u

In order to manipulate w-categories, we need:

> a type - for objects:

> a type — for arrows:

> a type = for 2-cells:

re

re

M-t M+ u:
[+ t—u

M=f:t—u MN-g:t—u

NrN-f=g¢g

Types for cells

Types for cells

In order to manipulate w-categories, we need:

> a type - for objects:
re

M
> a type — for arrows:
M-t MFu:

[+ t—u

> a type = for 2-cells:
M=f:t—u MN-g:t—u

NrN-f=g¢g

> etc

Types for cells

In order to manipulate w-categories, we need:

> a type x for objects:
re

[%

> a type — for all > 1-cells
=t A [Fu: A

M t—u
A

Contexts are diagrams!

Yy o5

fr:x—y,

Contexts are diagrams!
z t:

g:x—z, h:z—t, k:t—x

XY,

Contexts are diagrams!
z t:

g:x—z, h:z—t, k:t—x

PS-contexts

> The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment I -y

PS-contexts

> The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment I -y

> This judgment is decidable with an algorithm

Mo x T A
X ik Fps X 1k r,y:A,fiX?prszXTy
r"psfixjy M hps Xt %

MNhpsy 1 A M Fps

Source and target
Every ps-context I has a source 9~ (I') and a target 9" (I') (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

Source and target

Every ps-context I has a source 9~ (I') and a target 97 (I") (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

fi
Lot
I ° — fza% . 4>g .
N
f3

Example

Source and target

Every ps-context I has a source 9~ (I') and a target 9" (I') (which are ps-contexts

themselves)

Intuitively, composing fully the ps-context yields a cell from its source to its target

o-(I)

fi
Y
X y g z
—
f é
Y
X lla y g z
— = —_—

Example

Source and target

Every ps-context I has a source 9~ (I') and a target 9" (I') (which are ps-contexts

themselves)

Intuitively, composing fully the ps-context yields a cell from its source to its target

o-(I)

o+ ()

Y
X y g z
—
f é
Y
X lla y g z
— fo > Em—
N8
a4
X y g z
N AN

Example

Interpretation

> Aterm I+ t: A corresponds to a composition of certain cells of T.

Interpretation

> Aterm I+ t: A corresponds to a composition of certain cells of T.

> Case of ps-contexts I Fps:

F=t: A t is a way of composing completely the ps-
Var(t : A) = Var(l') context I

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

Rule for generating these compositions:

Mhps O (NFt:A 0 (N Fu:A Var(e: A) = Var(0-(T))
Var(u : A) = Var(97(I))

[+ op t—u
r,t A

—ru
A

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

Rule for generating these compositions:

[Fps oMNkFt:A o(Nku:A Var(t : A) = Var(9—(I))
Var(u : A) = Var(9*(I))

[+ op t—u
r,t A

—ru
A

F=x:xy:%xf x>y, z:xg:y—z
* *
[comp : x—z

Example

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

> general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

> general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these associativities:

ers FrEt: A Fru:A Var(t;A):Var(r)
Var(u : A) = Var(I)

I+ coh Ct—u
r, A

t—ru
A

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

> general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these associativities:

ers FrEt: A Fru:A Var(t;A):Var(r)
Var(u : A) = Var(I')

u

I+ coh Ct—u
rt— A

F=x:xy:xf: XY, 21K 8 Y2z, W *, h: z—ow
I+ assoc: comp f (comp g h)—>comp (comp f g) h

Example

Suspension in CaTT

A problem with CaTT

Writing in CaTT may be very tedious :

f
X~ x —y x x — ~ xw
y Ydg y
f

coh id (x:%*):x->x coh id2 (x:*) (y:*) (f:x->y):f->f

Writing in CaTT may be very tedious :

f g gof
X ——y —— 2z ~ X—Z

coh comp (x:%) (y:*) (f:x->y)
(z:%) (g:y->z) :x->z

A problem with CaTT

f f
o R
x—lf% y ~ x dasg y
S 5

coh vcomp (x:*) (y:*)(f:x->y) (g:x->y)
(a:f->g) (h:x->y) (b:g->h) :£->h

Writing in CaTT may be very tedious :

foidy
x sy ~ x4
y Uy

f

coh unitl (x:*) (y:*)(f:x->y)
:comp (id x) £ -> £

A problem with CaTT

f
f /_\
o

X \jkiz y ~ Xidera =0 ay

g NS
h
coh unitl2 (x:*) (y:*) (f:x->y)(g:x->y)

(a:f->g):vcomp (id f) a -> a

A solution: the suspension

|dea: Write only the left term and let the software generate the right one.

suspension
|

’coh id (x:%):x->x coh id2 (x:*)(y:*)(f:x—>y):f—>f‘

Practice: Generate the terms on the fly using the dimension of the argument.

coh id (x:*):x->x
~+| coh 1d2 (x:*) (y:*) (f:x->y) :f->f
let ex (x:*)(y:*)(f:x->y)=id2 £

coh id (x:%*):x->x
let ex (x:*)(y:*%)(f:x->y)=id £

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (x0:%Y0: %) Y(Mx:A)=XIx:ZA

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (x0:%Y0: %) Y(Mx:A)=XIx:ZA

* = X020 (Au) - u

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (x0:%Y0: %) Y(Mx:A)=XIx:ZA
* = X0 Y0 (7“) E

Y x — x Y (cohr a[v]) = cohsr za[XA]

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (x0:*Y0: %) Y(Mx:A)=XIx:ZA

Z*:Xo?yo (): —)ZU

Yx=x Y (cohr, A[’Y]) co h>:r TAXA]
2(0) = (0 = x0,¥0 = y0) L((yx = 1)) = (T, x = 2t)

On contexts:

[llustration

I >
X X0 X Yo
[] e — @
(x %) (X0 1%, y0 1%, x: Xoj}/o)

[llustration

On contexts:

r XTI
(x %) (x0 = %, ¥0 = %, X 1 X0 y0)

X X

L4 Y

\Lf 00 U,f }?
N AN

o y

y

(x %y :ixf: x?y) (X0 : %, Y0 : %, X X0—Y0,Y : Xo—>Yo, f 1 x—=Y)

Well-definedness of the suspension

YO = (x0: % Y0 *) Y(Mx:A)=XIx:ZA
* = X0—)0 (tju) to U
Yx =x Y (cohr alv]) = cohsrxa[XA]
Y(()) = (xo = x0,¥0 — Yo) Y((y,x = t)) = (Xvy,x — Xt)

Well-definedness of the suspension

YO = (x0: % Y0 *) Y(Mx:A)=XIx:ZA
* = X0—)0 (tju) to U
Yx=x Y (cohr alv]) = cohsrxa[XA]
Y ({)) = (xo — x0, Y0 — Y0) Y((y,x = t)) = (Xvy,x — Xt)
Theorem (B., Mimram)
The following rules are derivable
e M-A Met:A Aby:T

XIE XITHXA YIEXt: XA YAFXy: XT

Well-definedness of the suspension

YO = (x0: % Y0 *) Y(Mx:A)=XIx:ZA
* = X0—)0 (tju) to U
Yx=x Y (cohr alv]) = cohsrxa[XA]
Y ({)) = (xo — x0, Y0 — Y0) Y((y,x = t)) = (Xvy,x — Xt)
Theorem (B., Mimram)
The following rules are derivable
e M-A Met:A Aby:T

XIE XITHXA YIEXt: XA YAFXy: XT

Proof.
By induction over the rules of the theory

Example: A development using the suspension

coh id (x:*):x->x

coh comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2z) :x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*) (y:*)(f:x->y) (g:x->y) (a:f->g)=unit a

Example: A development using the suspension

coh id (x:*):x->x

coh comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2z) :x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*) (y:*)(f:x->y) (g:x->y) (a:f->g)=unit a

Internally:

Example: A development using the suspension

coh id (x:*):x->x

coh comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2z) :x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*) (y:*)(f:x->y) (g:x->y) (a:f->g)=unit a

Internally:

> The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 ~~ suspend once

Example: A development using the suspension

coh id (x:*):x->x

coh comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2z) :x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*) (y:*)(f:x->y) (g:x->y) (a:f->g)=unit a

Internally:

> The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 ~~ suspend once

> Compute the suspension of unit

Example: A development using the suspension

coh id (x:*):x->x

coh comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2z) :x->z

coh unit (x:*)(y:*) (f:x->y):comp (id x) f -> £

let unit2 (x:*) (y:*)(f:x->y) (g:x->y) (a:f->g)=unit a

Internally:

> The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 ~~ suspend once

> Compute the suspension of unit

> Compute the suspension of comp

Example: A development using the suspension

coh id (x:*):x->x

coh comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2z) :x->z

coh unit (x:*)(y:*) (f:x->y):comp (id x) f -> £

let unit2 (x:*) (y:*)(f:x->y) (g:x->y) (a:f->g)=unit a

Internally:

> The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 ~~ suspend once

> Compute the suspension of unit
> Compute the suspension of comp

> compute the suspension of id

Thank youl!

Try it yourself

https://thibautbenjamin.github.io/catt/

https://thibautbenjamin.github.io/catt/

	Introduction
	Weak -categories
	The type theory CaTT
	Suspension in CaTT
	Thank you!

