
CaTT: A type theoretic approach to weak ω-categories

Thibaut Benjamin, Eric Finster, Samuel Mimram

23 February 2021

Seminaire LSL

Introduction

Aim

Formal Methods Higher Dimensional Algebra
verifying

Dependent Type Theory Weak ω-categories

Aim

Formal Methods Higher Dimensional Algebra
verifying

Dependent Type Theory Weak ω-categories

Motivations: A bit of category theory

Categories are made of

objects arrows
• • •

Equipped with

identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying

unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Motivations: A bit of category theory

Categories are made of

objects

arrows

•

• •

Equipped with

identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying

unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Motivations: A bit of category theory

Categories are made of

objects arrows
• • •

Equipped with

identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying

unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Motivations: A bit of category theory

Categories are made of

objects arrows
• • •

Equipped with

identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying

unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Motivations: A bit of category theory

Categories are made of

objects arrows
• • •

Equipped with

identities

compositions

x x x
idx

x y zf g
 x z

g◦f

Satisfying

unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Motivations: A bit of category theory

Categories are made of

objects arrows
• • •

Equipped with

identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying

unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Motivations: A bit of category theory

Categories are made of

objects arrows
• • •

Equipped with

identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying

unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Motivations: A bit of category theory

Categories are made of

objects arrows
• • •

Equipped with

identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying

unitality

associativity

f ◦ idx = f = idy ◦f

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Motivations: A bit of category theory

Categories are made of

objects arrows
• • •

Equipped with

identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying

unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M

. A rewriting system is a category : objects = terms, morphisms = rewriting
relations.

A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M

. A rewriting system is a category : objects = terms, morphisms = rewriting
relations.

A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M

. A rewriting system is a category : objects = terms, morphisms = rewriting
relations.

A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M

. A rewriting system is a category : objects = terms, morphisms = rewriting
relations.

A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M

. A rewriting system is a category : objects = terms, morphisms = rewriting
relations.

A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M

. A rewriting system is a category : objects = terms, morphisms = rewriting
relations.

A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M

. A rewriting system is a category : objects = terms, morphisms = rewriting
relations.

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:

. Modeling functional programming (objects = types, morphisms = λ-terms)

. Encoding propositions and implications

. Defining algebraic structures

. And many other things...

Provide a common framework to study programming languages, logic and algebra�

Semantics

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
. Modeling functional programming (objects = types, morphisms = λ-terms)

. Encoding propositions and implications

. Defining algebraic structures

. And many other things...

Provide a common framework to study programming languages, logic and algebra�

Semantics

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
. Modeling functional programming (objects = types, morphisms = λ-terms)
. Encoding propositions and implications

. Defining algebraic structures

. And many other things...

Provide a common framework to study programming languages, logic and algebra�

Semantics

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
. Modeling functional programming (objects = types, morphisms = λ-terms)
. Encoding propositions and implications
. Defining algebraic structures

. And many other things...

Provide a common framework to study programming languages, logic and algebra�

Semantics

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
. Modeling functional programming (objects = types, morphisms = λ-terms)
. Encoding propositions and implications
. Defining algebraic structures
. And many other things...

Provide a common framework to study programming languages, logic and algebra�

Semantics

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
. Modeling functional programming (objects = types, morphisms = λ-terms)
. Encoding propositions and implications
. Defining algebraic structures
. And many other things...

Provide a common framework to study programming languages, logic and algebra�

Semantics

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
• • •

Equipped with
identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying
unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
Γ `

Γ ` ?
• •

Equipped with
identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying
unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
Γ `

Γ ` ?
Γ ` x : ? Γ ` y : ?

Γ ` x→y

Equipped with
identities compositions

x x x
idx x y zf g

 x z
g◦f

Satisfying
unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
Γ `

Γ ` ?
Γ ` x : ? Γ ` y : ?

Γ ` x→y

Equipped with
identities compositions

Γ ` x : ?

Γ ` id(x) : x→x
x y zf g

 x z
g◦f

Satisfying
unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
Γ `

Γ ` ?
Γ ` x : ? Γ ` y : ?

Γ ` x→y

Equipped with
identities compositions

Γ ` x : ?

Γ ` id(x) : x→x

Γ ` f : x→y Γ ` g : y→z

Γ ` g ◦ f : x→z

Satisfying
unitality associativity
f ◦ idx = f = idy ◦f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
Γ `

Γ ` ?
Γ ` x : ? Γ ` y : ?

Γ ` x→y

Equipped with
identities compositions

Γ ` x : ?

Γ ` id(x) : x→x

Γ ` f : x→y Γ ` g : y→z

Γ ` g ◦ f : x→z

Satisfying
unitality associativity

Γ ` f : x→y

Γ ` f ◦ id(x) ≡ f ≡ id(y) ◦ f
h ◦ (g ◦ f) = (h ◦ g) ◦ f

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
Γ `

Γ ` ?
Γ ` x : ? Γ ` y : ?

Γ ` x→y

Equipped with
identities compositions

Γ ` x : ?

Γ ` id(x) : x→x

Γ ` f : x→y Γ ` g : y→z

Γ ` g ◦ f : x→z

Satisfying
unitality associativity

Γ ` f : x→y

Γ ` f ◦ id(x) ≡ f ≡ id(y) ◦ f
Γ ` f : x→y Γ ` g : y→z Γ ` h : z→w

Γ ` h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f

Semantics

Dependent Type Theory Set TheoryModels
rules axioms

Type-theoretic formulation
of categories

Categories

Theorem
The models of the type-theoretic formulation of categories are the categories.

Semantics

Dependent Type Theory Set TheoryModels
rules axioms

Type-theoretic formulation
of categories

Categories

Theorem
The models of the type-theoretic formulation of categories are the categories.

In this presentation

Dependent Type Theory Set TheoryModels
rules axioms

CaTT
Weak ω-categories

(informally)

Suspension

In this presentation

Dependent Type Theory Set TheoryModels
rules axioms

CaTT
Weak ω-categories

(informally)

Suspension

Motivations: When categories are insufficient
Some situation that ought to be categories

. paths in topological spaces

. Identity types in Martin-Löf type
theory

•x

•y

p

•z

q

trans:
∏

A : U ,
∏

x y z : A,
x = y → y = z → x = z

trans A x x x refl refl := refl

But: The composition is not associative

(p ∗ q) ∗ r 6= p ∗ (q ∗ r)

Motivations: When categories are insufficient
Some situation that ought to be categories

. paths in topological spaces

. Identity types in Martin-Löf type
theory

•x

•y

p

•z

q

trans:
∏

A : U ,
∏

x y z : A,
x = y → y = z → x = z

trans A x x x refl refl := refl

The composition is associative up to homo-
topy

(p ∗ q) ∗ r ⇒ p ∗ (q ∗ r)

Motivations: When categories are insufficient
Some situation that ought to be categories

. paths in topological spaces
. Identity types in Martin-Löf type

theory

•x

•y

p

•z

q

trans:
∏

A : U ,
∏

x y z : A,
x = y → y = z → x = z

trans A x x x refl refl := refl

The composition is associative up to homo-
topy

(p ∗ q) ∗ r ⇒ p ∗ (q ∗ r)

But: Transitivity is not associative

trans(trans p q) r 6≡ trans p (trans q r)

Motivations: When categories are insufficient
Some situation that ought to be categories

. paths in topological spaces
. Identity types in Martin-Löf type

theory

•x

•y

p

•z

q

trans:
∏

A : U ,
∏

x y z : A,
x = y → y = z → x = z

trans A x x x refl refl := refl

The composition is associative up to homo-
topy

(p ∗ q) ∗ r ⇒ p ∗ (q ∗ r)

There is a proof term for associativity
assoc:

∏
A : U ,

∏
x y z w : A,∏

p : x = y ,
∏

q : y = z ,
∏

r : z = w ,
trans(trans p q) r = trans p (trans q r)

Higher categories

We can encode this defect into cells of higher dimension

Weak ω-categories

Globular sets
Weak ω-categories = globular sets + compositions

Globular sets
A globular set is composed of
. points (or objects) : •

. arrows (or 1-cells) : • •

. 2-cells : • •⇓

. 3-cells : • •⇓V ⇓

. etc

• •

• • •

• •

⇓ ⇓
⇓

⇓ ⇓⇓V ⇓

Globular sets
A globular set is composed of
. points (or objects) : •
. arrows (or 1-cells) : • •

. 2-cells : • •⇓

. 3-cells : • •⇓V ⇓

. etc

• •

• • •

• •

⇓ ⇓
⇓

⇓ ⇓⇓V ⇓

Globular sets
A globular set is composed of
. points (or objects) : •
. arrows (or 1-cells) : • •

. 2-cells : • •⇓

. 3-cells : • •⇓V ⇓

. etc

• •

• • •

• •

⇓ ⇓
⇓

⇓ ⇓⇓V ⇓

Globular sets
A globular set is composed of
. points (or objects) : •
. arrows (or 1-cells) : • •

. 2-cells : • •⇓

. 3-cells : • •⇓V ⇓

. etc

• •

• • •

• •

⇓ ⇓
⇓

⇓ ⇓⇓V ⇓

Globular sets
A globular set is composed of
. points (or objects) : •
. arrows (or 1-cells) : • •

. 2-cells : • •⇓

. 3-cells : • •⇓V ⇓

. etc

• •

• • •

• •

⇓ ⇓
⇓

⇓ ⇓⇓V ⇓

Globular sets
A globular set is composed of
. points (or objects) : •
. arrows (or 1-cells) : • •

. 2-cells : • •⇓

. 3-cells : • •⇓V ⇓

. etc

• •

• • •

• •

⇓ ⇓
⇓

⇓ ⇓⇓V ⇓

With compositions
We require that these cells compose

. Arrows:
x•

y
• z•f g g◦f

. 2-cells:

Vertical composition

Horizontal composition

x•
y
•

f

g

h

⇓ α

⇓ β

f

h

⇓β◦1α

f

g

⇓ α

f ′

g ′

⇓ β

f ′◦f

g ′◦g

⇓β◦0α

. etc

With compositions
We require that these cells compose
. Arrows:

x•
y
• z•f g g◦f

. 2-cells:

Vertical composition

Horizontal composition

x•
y
•

f

g

h

⇓ α

⇓ β

f

h

⇓β◦1α

f

g

⇓ α

f ′

g ′

⇓ β

f ′◦f

g ′◦g

⇓β◦0α

. etc

With compositions
We require that these cells compose
. Arrows:

x•
y
• z• x• z•f g g◦f

. 2-cells:

Vertical composition

Horizontal composition

x•
y
•

f

g

h

⇓ α

⇓ β

f

h

⇓β◦1α

f

g

⇓ α

f ′

g ′

⇓ β

f ′◦f

g ′◦g

⇓β◦0α

. etc

With compositions
We require that these cells compose
. Arrows:

x•
y
• z• x• z•f g g◦f

. 2-cells:

Vertical composition

Horizontal composition

x•
y
•

f

g

h

⇓ α

⇓ β

f

h

⇓β◦1α

f

g

⇓ α

f ′

g ′

⇓ β

f ′◦f

g ′◦g

⇓β◦0α

. etc

With compositions
We require that these cells compose
. Arrows:

x•
y
• z• x• z•f g g◦f

. 2-cells:

Vertical composition

Horizontal composition

x•
y
•

x•
y
•

f

g

h

⇓ α

⇓ β

f

h

⇓β◦1α

f

g

⇓ α

f ′

g ′

⇓ β

f ′◦f

g ′◦g

⇓β◦0α

. etc

With compositions
We require that these cells compose
. Arrows:

x•
y
• z• x• z•f g g◦f

. 2-cells:

Vertical composition Horizontal composition

x•
y
•

x•
y
•

f

g

h

⇓ α

⇓ β

f

h

⇓β◦1α

x•
y
• z•

f

g

⇓ α

f ′

g ′

⇓ β

f ′◦f

g ′◦g

⇓β◦0α

. etc

With compositions
We require that these cells compose
. Arrows:

x•
y
• z• x• z•f g g◦f

. 2-cells:

Vertical composition Horizontal composition

x•
y
•

x•
y
•

f

g

h

⇓ α

⇓ β

f

h

⇓β◦1α

x•
y
• z•

x• z•

f

g

⇓ α

f ′

g ′

⇓ β

f ′◦f

g ′◦g

⇓β◦0α

. etc

With compositions
We require that these cells compose
. Arrows:

x•
y
• z• x• z•f g g◦f

. 2-cells:

Vertical composition Horizontal composition

x•
y
•

x•
y
•

f

g

h

⇓ α

⇓ β

f

h

⇓β◦1α

x•
y
• z•

x• z•

f

g

⇓ α

f ′

g ′

⇓ β

f ′◦f

g ′◦g

⇓β◦0α

. etc

Satisfying associativity
The compositions are required to be associative

. Arrows: • • • •

. 2-cells:

Vertical composition

Horizontal composition

• •
⇓

⇓
⇓ ⇓ ⇓ ⇓

Exchange law

⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition

Horizontal composition

• •
⇓

⇓
⇓ ⇓ ⇓ ⇓

Exchange law

⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition

Horizontal composition

• •
⇓

⇓
⇓ ⇓ ⇓ ⇓

Exchange law

⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition

Horizontal composition

• •
⇓

⇓
⇓ ⇓ ⇓ ⇓

Exchange law

⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

• • •
⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

• • •
⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

• •
⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

• • •
⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

• •
⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

• •
⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

• • •
⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Satisfying associativity
The compositions are required to be associative
. Arrows: • • • •

. 2-cells:

Vertical composition Horizontal composition

• •
⇓

⇓
⇓ • • • •⇓ ⇓ ⇓

Exchange law

• • •
⇓⇓⇓
⇓⇓⇓
⇓ ⇓
⇓

⇓
⇓
⇓⇓⇓
⇓⇓⇓
⇓

. etc

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

• •

h◦(g◦f)

(h◦g)◦f

α ⇓ ⇑β

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

• •

h◦(g◦f)

(h◦g)◦f

α ⇓ ⇑β

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

• • • • • •
⇓
⇓

Examples

• • • •
⇓
⇓

•

Counter-Examples

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

• • • • • •
⇓
⇓

Examples

• • • •
⇓
⇓

•

Counter-Examples

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

• • • • • •
⇓
⇓

Examples

• • • •
⇓
⇓

•

Counter-Examples

The Grothendieck-Maltsiniotis definition

. Existence of compositions:
Every pasting scheme can be composed

. Generalized “Associativities”:
Any two ways of composing a same pasting scheme are related by a higher cell

The Grothendieck-Maltsiniotis definition

. Existence of compositions:
Every pasting scheme can be composed

. Generalized “Associativities”:
Any two ways of composing a same pasting scheme are related by a higher cell

The type theory CaTT

First Examples

coh

︸︷︷︸

comp

︸︷︷︸

(x:*)(y:*)(f:x->y)(z:*)(g:y->z)

︸ ︷︷ ︸

: x->z

︸︷︷︸

First Examples

coh︸︷︷︸ comp

︸︷︷︸

(x:*)(y:*)(f:x->y)(z:*)(g:y->z)

︸ ︷︷ ︸

: x->z

︸︷︷︸
Return type
x• z•

Globular set
x•

y
• z•f g

Name of the operation
comp

Keyword: declaration of an operation

First Examples

coh︸︷︷︸ comp︸︷︷︸ (x:*)(y:*)(f:x->y)(z:*)(g:y->z)

︸ ︷︷ ︸

: x->z

︸︷︷︸
Return type
x• z•

Globular set
x•

y
• z•f g

Name of the operation
comp

Keyword: declaration of an operation

First Examples

coh︸︷︷︸ comp︸︷︷︸ (x:*)(y:*)(f:x->y)(z:*)(g:y->z)︸ ︷︷ ︸ : x->z

︸︷︷︸
Return type
x• z•

Globular set
x•

y
• z•f g

Name of the operation
comp

Keyword: declaration of an operation

First Examples

coh︸︷︷︸ comp︸︷︷︸ (x:*)(y:*)(f:x->y)(z:*)(g:y->z)︸ ︷︷ ︸ : x->z︸︷︷︸
Return type
x• z•

Globular set
x•

y
• z•f g

Name of the operation
comp

Keyword: declaration of an operation

First Examples

coh

︸︷︷︸

comp

︸︷︷︸

(x:*)(y:*)(f:x->y)(z:*)(g:y->z)

︸ ︷︷ ︸

: x->z

︸︷︷︸

x•
y
• z•f g

x• z•comp f g

Composition of two arrows

First Examples

coh

︸︷︷︸

comp

︸︷︷︸

(x:*)(y:*)(f:x->y)(z:*)(g:y->z)

︸ ︷︷ ︸

: x->z

︸︷︷︸

x•
y
• z•f g

x• z•comp f g

Composition of two arrows

coh id (x:*) : x->x

First Examples

coh

︸︷︷︸

comp

︸︷︷︸

(x:*)(y:*)(f:x->y)(z:*)(g:y->z)

︸ ︷︷ ︸

: x->z

︸︷︷︸

x•
y
• z•f g

x• z•comp f g

Composition of two arrows

coh id (x:*) : x->x

x•
x•

id x

Identity of an object

Types for cells

In order to manipulate ω-categories, we need:

. a type ? for objects:
Γ `

Γ ` ?

Types for cells

In order to manipulate ω-categories, we need:
. a type ? for objects:

Γ `
Γ ` ?

Types for cells

In order to manipulate ω-categories, we need:
. a type ? for objects:

Γ `
Γ ` ?

. a type → for arrows:
Γ ` t : ? Γ ` u : ?

Γ ` t→u

. a type ⇒ for 2-cells:
Γ ` f : t→u Γ ` g : t→u

Γ ` f ⇒ g

. etc

Types for cells

In order to manipulate ω-categories, we need:
. a type ? for objects:

Γ `
Γ ` ?

. a type → for arrows:
Γ ` t : ? Γ ` u : ?

Γ ` t→u

. a type ⇒ for 2-cells:
Γ ` f : t→u Γ ` g : t→u

Γ ` f ⇒ g

. etc

Types for cells

In order to manipulate ω-categories, we need:
. a type ? for objects:

Γ `
Γ ` ?

. a type → for arrows:
Γ ` t : ? Γ ` u : ?

Γ ` t→u

. a type ⇒ for 2-cells:
Γ ` f : t→u Γ ` g : t→u

Γ ` f ⇒ g

. etc

Types for cells

In order to manipulate ω-categories, we need:
. a type ? for objects:

Γ `
Γ ` ?

. a type → for all ≥ 1-cells
Γ ` t : A Γ ` u : A

Γ ` t−→
A
u

Contexts are diagrams!

Γ



x : ?, y : ?, z : ?, t : ?

f1 : x−→
?
y , f2 : x−→

?
y , g : x−→

?
z , h : z−→

?
t, k : t−→

?
x

α : f1−−−→
x−→

?
y

f2

z•

x•
y
•

t•

h
f1

f2

⇓α

g

k

Contexts are diagrams!

Γ



x : ?, y : ?, z : ?, t : ?

f1 : x−→
?
y , f2 : x−→

?
y , g : x−→

?
z , h : z−→

?
t, k : t−→

?
x

α : f1−−−→
x−→

?
y

f2

z•

x•
y
•

t•

h
f1

f2

⇓α

g

k

Contexts are diagrams!

Γ



x : ?, y : ?, z : ?, t : ?

f1 : x−→
?
y , f2 : x−→

?
y , g : x−→

?
z , h : z−→

?
t, k : t−→

?
x

α : f1−−−→
x−→

?
y

f2

z•

x•
y
•

t•

h
f1

f2

⇓α

g

k

PS-contexts

. The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment Γ `ps

. This judgment is decidable with an algorithm

x : ? `ps x : ?

Γ `ps f : x−→
A
y

Γ `ps y : A

Γ `ps x : A

Γ, y : A, f : x−→
A
y `ps f : x−→

A
y

Γ `ps x : ?

Γ `ps

PS-contexts

. The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment Γ `ps

. This judgment is decidable with an algorithm

x : ? `ps x : ?

Γ `ps f : x−→
A
y

Γ `ps y : A

Γ `ps x : A

Γ, y : A, f : x−→
A
y `ps f : x−→

A
y

Γ `ps x : ?

Γ `ps

Source and target
Every ps-context Γ has a source ∂−(Γ) and a target ∂+(Γ) (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

Γ
x•

y
• z•

f1

g

f1

f2
⇓ α

f3

⇓ β

g

f3

g

Example

Source and target
Every ps-context Γ has a source ∂−(Γ) and a target ∂+(Γ) (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

Γ
x•

y
• z•

f1

g

f1

f2
⇓ α

f3

⇓ β

g

f3

g

Example

Source and target
Every ps-context Γ has a source ∂−(Γ) and a target ∂+(Γ) (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

∂−(Γ)
x•

y
• z•

Γ
x•

y
• z•

f1

g

f1

f2
⇓ α

f3

⇓ β

g

f3

g

Example

Source and target
Every ps-context Γ has a source ∂−(Γ) and a target ∂+(Γ) (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

∂−(Γ)
x•

y
• z•

Γ
x•

y
• z•

∂+(Γ)
x•

y
• z•

f1

g

f1

f2
⇓ α

f3

⇓ β

g

f3

g

Example

Interpretation

. A term Γ ` t : A corresponds to a composition of certain cells of Γ.

. Case of ps-contexts Γ `ps:

Γ ` t : A
Var(t : A) = Var(Γ)

}
t is a way of composing completely the ps-
context Γ.

Interpretation

. A term Γ ` t : A corresponds to a composition of certain cells of Γ.

. Case of ps-contexts Γ `ps:

Γ ` t : A
Var(t : A) = Var(Γ)

}
t is a way of composing completely the ps-
context Γ.

Operations and coherences
. Existence of compositions:

Every pasting scheme can be composed

. general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these associativities:

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)

Γ = x : ?, y : ?, f : x−→
?
y , z : ?, g : y−→

?
z ,w : ?, h : z−→

?
w

Γ ` assoc : comp f (comp g h)→comp (comp f g) h

Example

Operations and coherences
. Existence of compositions:

Every pasting scheme can be composed

. general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these compositions:

Γ `ps ∂−(Γ) ` t : A ∂+(Γ) ` u : A

Γ ` op
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(∂−(Γ))
Var(u : A) = Var(∂+(Γ))

Rule for generating these associativities:

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)

Γ = x : ?, y : ?, f : x−→
?
y , z : ?, g : y−→

?
z ,w : ?, h : z−→

?
w

Γ ` assoc : comp f (comp g h)→comp (comp f g) h

Example

Operations and coherences
. Existence of compositions:

Every pasting scheme can be composed

. general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these compositions:

Γ `ps ∂−(Γ) ` t : A ∂+(Γ) ` u : A

Γ ` op
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(∂−(Γ))
Var(u : A) = Var(∂+(Γ))

Γ = x : ?, y : ?, f : x−→
?
y , z : ?, g : y−→

?
z

Γ ` comp : x→z

Example

Rule for generating these associativities:

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)

Γ = x : ?, y : ?, f : x−→
?
y , z : ?, g : y−→

?
z ,w : ?, h : z−→

?
w

Γ ` assoc : comp f (comp g h)→comp (comp f g) h

Example

Operations and coherences
. Existence of compositions:

Every pasting scheme can be composed

. general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these associativities:

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)

Γ = x : ?, y : ?, f : x−→
?
y , z : ?, g : y−→

?
z ,w : ?, h : z−→

?
w

Γ ` assoc : comp f (comp g h)→comp (comp f g) h

Example

Operations and coherences
. Existence of compositions:

Every pasting scheme can be composed

. general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these associativities:

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)

Γ = x : ?, y : ?, f : x−→
?
y , z : ?, g : y−→

?
z ,w : ?, h : z−→

?
w

Γ ` assoc : comp f (comp g h)→comp (comp f g) h

Example

Operations and coherences
. Existence of compositions:

Every pasting scheme can be composed

. general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these associativities:

Γ `ps Γ ` t : A Γ ` u : A

Γ ` coh
Γ,t−→

A
u

: t−→
A
u

Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)

Γ = x : ?, y : ?, f : x−→
?
y , z : ?, g : y−→

?
z ,w : ?, h : z−→

?
w

Γ ` assoc : comp f (comp g h)→comp (comp f g) h

Example

Suspension in CaTT

A problem with CaTT

Writing in CaTT may be very tedious :

x x x
idx x y x yf

f

f

⇓ idf

coh id (x:*):x->x coh id2 (x:*)(y:*)(f:x->y):f->f

A problem with CaTT

Writing in CaTT may be very tedious :

x y z x zf g

g◦f
x y x y

f

g

h

⇓α
⇓β

f

h

⇓α∗β

coh comp (x:*)(y:*)(f:x->y)
(z:*)(g:y->z):x->z

coh vcomp (x:*)(y:*)(f:x->y)(g:x->y)
(a:f->g)(h:x->y)(b:g->h):f->h

A problem with CaTT

Writing in CaTT may be very tedious :

x y x yf
f ◦idx

f

⇓ x y x y

f

g

⇓α

f

h

idf ∗α ⇓V⇓ α

coh unitl (x:*)(y:*)(f:x->y)
:comp (id x) f -> f

coh unitl2 (x:*)(y:*)(f:x->y)(g:x->y)
(a:f->g):vcomp (id f) a -> a

A solution: the suspension

Idea: Write only the left term and let the software generate the right one.

coh id (x:*):x->x
suspension
 coh id2 (x:*)(y:*)(f:x->y):f->f

Practice: Generate the terms on the fly using the dimension of the argument.

coh id (x:*):x->x
let ex (x:*)(y:*)(f:x->y)=id f

coh id (x:*):x->x
coh id2 (x:*)(y:*)(f:x->y):f->f
let ex (x:*)(y:*)(f:x->y)=id2 f

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

Σ∅ = (x0 : ?, y0 : ?) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0−→
?
y0 Σ(t−→

A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

Σ∅ = (x0 : ?, y0 : ?) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0−→
?
y0 Σ(t−→

A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

Σ∅ = (x0 : ?, y0 : ?) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0−→
?
y0 Σ(t−→

A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

Σ∅ = (x0 : ?, y0 : ?) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0−→
?
y0 Σ(t−→

A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

Σ∅ = (x0 : ?, y0 : ?) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0−→
?
y0 Σ(t−→

A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Illustration

On contexts:

Γ ΣΓ

x• x0•
y0•x

(x : ?) (x0 : ?, y0 : ?, x : x0−→
?
y0)

x•

•
y

f
x0•

y0•

x

y

⇓f

(x : ?, y : ?, f : x−→
?
y) (x0 : ?, y0 : ?, x : x0→y0, y : x0→y0, f : x→y)

Illustration

On contexts:

Γ ΣΓ

x• x0•
y0•x

(x : ?) (x0 : ?, y0 : ?, x : x0−→
?
y0)

x•

•
y

f
x0•

y0•

x

y

⇓f

(x : ?, y : ?, f : x−→
?
y) (x0 : ?, y0 : ?, x : x0→y0, y : x0→y0, f : x→y)

Well-definedness of the suspension

Σ∅ = (x0 : ∗, y0 : ∗) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0→y0 Σ(t−→
A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Theorem (B., Mimram)
The following rules are derivable

Γ `
ΣΓ `

Γ ` A

ΣΓ ` ΣA

Γ ` t : A

ΣΓ ` Σt : ΣA

∆ ` γ : Γ

Σ∆ ` Σγ : ΣΓ

Proof.
By induction over the rules of the theory

Well-definedness of the suspension

Σ∅ = (x0 : ∗, y0 : ∗) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0→y0 Σ(t−→
A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Theorem (B., Mimram)
The following rules are derivable

Γ `
ΣΓ `

Γ ` A

ΣΓ ` ΣA

Γ ` t : A

ΣΓ ` Σt : ΣA

∆ ` γ : Γ

Σ∆ ` Σγ : ΣΓ

Proof.
By induction over the rules of the theory

Well-definedness of the suspension

Σ∅ = (x0 : ∗, y0 : ∗) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0→y0 Σ(t−→
A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Theorem (B., Mimram)
The following rules are derivable

Γ `
ΣΓ `

Γ ` A

ΣΓ ` ΣA

Γ ` t : A

ΣΓ ` Σt : ΣA

∆ ` γ : Γ

Σ∆ ` Σγ : ΣΓ

Proof.
By induction over the rules of the theory

Example: A development using the suspension

coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a

Internally:

. The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 suspend once

. Compute the suspension of unit

. Compute the suspension of comp

. compute the suspension of id

Example: A development using the suspension

coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a

Internally:

. The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 suspend once

. Compute the suspension of unit

. Compute the suspension of comp

. compute the suspension of id

Example: A development using the suspension

coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a

Internally:
. The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 suspend once

. Compute the suspension of unit

. Compute the suspension of comp

. compute the suspension of id

Example: A development using the suspension

coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a

Internally:
. The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 suspend once

. Compute the suspension of unit

. Compute the suspension of comp

. compute the suspension of id

Example: A development using the suspension

coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a

Internally:
. The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 suspend once

. Compute the suspension of unit

. Compute the suspension of comp

. compute the suspension of id

Example: A development using the suspension

coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a

Internally:
. The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 suspend once

. Compute the suspension of unit

. Compute the suspension of comp

. compute the suspension of id

Thank you!

Try it yourself

https://thibautbenjamin.github.io/catt/

https://thibautbenjamin.github.io/catt/

	Introduction
	Weak -categories
	The type theory CaTT
	Suspension in CaTT
	Thank you!

