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A few example of categories

The category of sets: objects = sets, morphisms = functions
The category of groups: objects = groups, morphisms = group homomorphisms
The category of vector spaces: objects = vector spaces, morphisms = linear maps

The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

Every monoid M is a category : objects = {e}, morphisms = M

A rewriting system is a category : objects = terms, morphisms = rewriting
relations.
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Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)
> Encoding propositions and implications
> Defining algebraic structures
> And many other things...

Provide a common framework to study programming languages, logic and algebra
L Semantics
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Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x

[ [ Xx—=y
Equipped with

identities compositions

MN=x:% MN=f:x—y N-g:y—z

IEid(x) @ x—x NFgof:x—z
Satisfying

unitality associativity

=1 x>y M=f:x—y Fg:y—z =h:z-w

N=foid(x)=f=id(y)of l-ho(gof)=(hog)of
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Motivations: When categories are insufficient
Some situation that ought to be categories

> ldentity types in Martin-Lof type

> paths in topological
paths in topological spaces theory

trans: [[A:U, [[xy z: A,
X=y—=>y=zZ>3X=2
trans A x x x refl refl := refl

There is a proof term for associativity
The composition is associative up to homo-  jqq0c- [TA:U [ xyzw:A,

topy [Ilp:x=y, [lg:y=2z [lr:z=w,
(p*q)xr=px(q=*r) trans(trans p q) r = trans p (trans q r)
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The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

IR,
— e —— — e ——
N
Examples
—. a4
_ — \U

Counter-Examples
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The Grothendieck-Maltsiniotis definition

> Existence of compositions:
Every pasting scheme can be composed

> Generalized “Associativities™
Any two ways of composing a same pasting scheme are related by a higher cell
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First Examples

&O’IL comp (x:%) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

Return type ‘/

X z
Globular set
X f y g z
—_— e —

Name of the operation
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Keyword: declaration of an operation
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First Examples

coh comp (x:*) (y:*) (f:x->y) (z:%) (g:y->z) : x->z

X f y g z X comp f g z
_—

Composition of two arrows

coh id (x:*) : =x->x

Identity of an object
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Types for cells

In order to manipulate w-categories, we need:

> a type - for objects:
re

M
> a type — for arrows:
M-t MFu:

[+ t—u

> a type = for 2-cells:
M=f:t—u MN-g:t—u

NrN-f=g¢g

> etc



Types for cells

In order to manipulate w-categories, we need:

> a type x for objects:
re

[ %

> a type — for all > 1-cells
=t A [Fu: A

M t—u
A



Contexts are diagrams!



Yy o5

fr:x—y,

Contexts are diagrams!
z t:

g:x—z, h:z—t, k:t—x



XY,

Contexts are diagrams!
z t:

g:x—z, h:z—t, k:t—x



PS-contexts

> The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment I -y



PS-contexts

> The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment I -y

> This judgment is decidable with an algorithm

Mo x T A
X ik Fps X 1k r,y:A,fiX?prszXTy
r"psfixjy M hps Xt %

MNhpsy 1 A M Fps
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Source and target

Every ps-context I has a source 9~ (I') and a target 9" (I') (which are ps-contexts

themselves)

Intuitively, composing fully the ps-context yields a cell from its source to its target

o-(I)

o+ ()

Y
X y g z
—
f é
Y
X lla y g z
— fo > Em—
N8
a4
X y g z
N AN

Example
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Interpretation

> Aterm I+ t: A corresponds to a composition of certain cells of T.

> Case of ps-contexts I Fps:

F=t: A t is a way of composing completely the ps-
Var(t : A) = Var(l') context I
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> Existence of compositions:
Every pasting scheme can be composed

Rule for generating these compositions:
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Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

Rule for generating these compositions:

[ Fps oMNkFt:A  o(Nku:A Var(t : A) = Var(9—(I))
Var(u : A) = Var(9*(I))

[+ op t—u
r,t A

—ru
A

F=x:xy:%xf x>y, z:xg:y—z
* *
[ comp : x—z

Example
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Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

> general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Rule for generating these associativities:

ers FrEt: A Fru:A Var(t;A):Var(r)
Var(u : A) = Var(I')

u

I+ coh Ct—u
rt— A

F=x:xy:xf: XY, 21K 8 Y2z, W *, h: z—ow
I+ assoc: comp f (comp g h)—>comp (comp f g) h

Example
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Writing in CaTT may be very tedious :

f
X~ x —y x x — ~ xw
y Ydg y
f

coh id (x:%*):x->x coh id2 (x:*) (y:*) (f:x->y):f->f



Writing in CaTT may be very tedious :

f g gof
X ——y —— 2z ~ X—Z

coh comp (x:%) (y:*) (f:x->y)
(z:%) (g:y->z) :x->z

A problem with CaTT

f f
o R
x—lf% y ~ x dasg y
S 5

coh vcomp (x:*) (y:*)(f:x->y) (g:x->y)
(a:f->g) (h:x->y) (b:g->h) :£->h



Writing in CaTT may be very tedious :

foidy
x sy ~ x4
y Uy

f

coh unitl (x:*) (y:*)(f:x->y)
:comp (id x) £ -> £

A problem with CaTT

f
f /_\
o

X \jkiz y ~ Xidera =0 ay

g NS
h
coh unitl2 (x:*) (y:*) (f:x->y)(g:x->y)

(a:f->g):vcomp (id f) a -> a



A solution: the suspension

|dea: Write only the left term and let the software generate the right one.

suspension
|

’coh id (x:%):x->x coh id2 (x:*)(y:*)(f:x—>y):f—>f‘

Practice: Generate the terms on the fly using the dimension of the argument.

coh id (x:*):x->x
~+| coh 1d2 (x:*) (y:*) (f:x->y) :f->f
let ex (x:*)(y:*)(f:x->y)=id2 £

coh id (x:%*):x->x
let ex (x:*)(y:*%)(f:x->y)=id £
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Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (x0:*Y0: %) Y(Mx:A)=XIx:ZA

Z*:Xo?yo ( ): —)ZU

Yx=x Y (cohr, A[’Y]) co h>:r TAXA]
2(0) = (0 = x0,¥0 = y0) L((yx = 1)) = (T, x = 2t)



On contexts:

[llustration

I >
X X0 X Yo
[ ] e — @
(x %) (X0 1%, y0 1%, x: Xoj}/o)




[llustration

On contexts:

r XTI
(x %) (x0 = %, ¥0 = %, X 1 X0 y0)

X X

L4 Y

\Lf 00 U,f }?
N AN

o y

y

(x %y :ixf: x?y) (X0 : %, Y0 : %, X X0—Y0,Y : Xo—>Yo, f 1 x—=Y)
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Well-definedness of the suspension

YO = (x0: % Y0 *) Y(Mx:A)=XIx:ZA
* = X0—)0 (tju) to U
Yx=x Y (cohr alv]) = cohsrxa[XA]
Y ({)) = (xo — x0, Y0 — Y0) Y((y,x = t)) = (Xvy,x — Xt)
Theorem (B., Mimram)
The following rules are derivable
e M-A Met:A Aby:T

XIE XITHXA YIEXt: XA YAFXy: XT

Proof.
By induction over the rules of the theory



Example: A development using the suspension

coh id (x:*):x->x

coh comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2z) :x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*) (y:*)(f:x->y) (g:x->y) (a:f->g)=unit a
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coh id (x:*):x->x

coh comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2z) :x->z
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Thank youl!



Try it yourself

https://thibautbenjamin.github.io/catt/


https://thibautbenjamin.github.io/catt/
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