CaTT: A type theoretic approach to weak w-categories

Thibaut Benjamin, Eric Finster, Samuel Mimram

12 February 2021

Seminaire polygraphes, categories superieures

Introduction

The panorama

DHa

The panorama

DHa

Motivations: A bit of category theory

Categories are made of

Motivations: A bit of category theory

Categories are made of

objects
[]

Motivations: A bit of category theory

Categories are made of

objects arrows
[] e — @

Motivations: A bit of category theory

Categories are made of

objects arrows
[] e — @

Equipped with

Categories are made of

objects
[]

Equipped with

identities

idx
X~~~ X — X

Motivations: A bit of category theory

arrows
e — o

Categories are made of

objects
[]

Equipped with

identities

idx
X~~~ X — X

Motivations: A bit of category theory

arrows
e — o

compositions

f g gof
X —=y —2Z ~» X — Z

Categories are made of

objects
[]

Equipped with
identities

idx
X~~~ X — X

Satisfying

Motivations: A bit of category theory

arrows
e — o

compositions

f g gof
X —=y —2Z ~» X — Z

Categories are made of

objects
[]

Equipped with
identities
X~ x 0
Satisfying

unitality
foidy = f =idy of

Motivations: A bit of category theory

arrows
e — o

compositions

f g gof
X —=y —2Z ~» X — Z

Categories are made of

objects
[]

Equipped with
identities
X~ x 0
Satisfying

unitality
foidy = f =idy of

Motivations: A bit of category theory

arrows
e — o

compositions

f g gof
X —=y —2Z ~» X — Z

associativity
ho(gof)=(hog)of

A few example of categories

> The category of sets: objects = sets, morphisms = functions

A few example of categories

> The category of sets: objects = sets, morphisms = functions

> The category of groups: objects = groups, morphisms = group homomorphisms

A few example of categories

> The category of sets: objects = sets, morphisms = functions
> The category of groups: objects = groups, morphisms = group homomorphisms

> The category of vector spaces: objects = vector spaces, morphisms = linear maps

A few example of categories

> The category of sets: objects = sets, morphisms = functions
> The category of groups: objects = groups, morphisms = group homomorphisms
> The category of vector spaces: objects = vector spaces, morphisms = linear maps

> The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

A few example of categories

The category of sets: objects = sets, morphisms = functions
The category of groups: objects = groups, morphisms = group homomorphisms
The category of vector spaces: objects = vector spaces, morphisms = linear maps

The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

A few example of categories

The category of sets: objects = sets, morphisms = functions
The category of groups: objects = groups, morphisms = group homomorphisms
The category of vector spaces: objects = vector spaces, morphisms = linear maps

The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

Every monoid M is a category : objects = {e}, morphisms = M.

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:

> Modeling functional programming (objects = types, morphisms = A-terms)

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)

> Encoding propositions and implications

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)
> Encoding propositions and implications

> Defining algebraic structures

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)
> Encoding propositions and implications
> Defining algebraic structures

> And many other things...

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
> Modeling functional programming (objects = types, morphisms = A-terms)
> Encoding propositions and implications
> Defining algebraic structures

> And many other things...

Provide a common framework to study programming languages, logic and algebra
L Semantics

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
[] e —— @

Equipped with

identities compositions
idx f g gof
X~ X — X X*)_)/HZWXHZ
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
[+ o —— o
=%

Equipped with

identities compositions
idx f g gof
X~ X — X X*)_)/HZWXHZ
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x
=% = x—y

Equipped with

identities compositions
idx f g gof
X~~~ X — X X*)_)/*)ZWX*)Z
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x
=% = x—y

Equipped with

identities compositions
: f
r'_X-* X*f>yL>ZWXL>Z
IEid(x) : x—x
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x
=% = x—y

Equipped with

identities compositions
MN=x:% MN=f:x—y N-g:y—z
IEid(x) : x—x NFgof:x—z
Satisfying
unitality associativity

foidy =f =idyof ho(gof)=(hog)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x
=% = x—y

Equipped with

identities compositions
MN=x:% MN=f:x—y N-g:y—z
IEid(x) : x—x NFgof:x—z
Satisfying
unitality associativity
[Ef:x—y ho(gof)=(hog)of

N=foid(x)=f=id(y)of

Foreshadowing: Type theoretic formulation of categories
Categories are made of

objects arrows
I MNEx:x NEy:x

[[Xx—=y
Equipped with

identities compositions

MN=x:% MN=f:x—y N-g:y—z

IEid(x) : x—x NFgof:x—z
Satisfying

unitality associativity

=1 x>y M=f:x—y Fg:y—z =h:z-w

N=foid(x)=f=id(y)of l-ho(gof)=(hog)of

The usefulness of categories for semantics

> One can encode the syntax together with derivability using categories
The syntactic category: objects = contexts, morphisms = substitutions

The usefulness of categories for semantics

> One can encode the syntax together with derivability using categories
The syntactic category: objects = contexts, morphisms = substitutions

> How to encode the type and terms of the theory?
Use an elaborate categorical construction: Categories with families (CwF)

The usefulness of categories for semantics

> One can encode the syntax together with derivability using categories
The syntactic category: objects = contexts, morphisms = substitutions

> How to encode the type and terms of the theory?
Use an elaborate categorical construction: Categories with families (CwF)

> The syntactic category of the theory is a CwF
Encodes all the rules into a categorical device, comes with a notion of morphism

The usefulness of categories for semantics

One can encode the syntax together with derivability using categories
The syntactic category: objects = contexts, morphisms = substitutions

How to encode the type and terms of the theory?
Use an elaborate categorical construction: Categories with families (CwF)

The syntactic category of the theory is a CwF
Encodes all the rules into a categorical device, comes with a notion of morphism

Models of the theory : morphisms of CwF from the syntactic category to sets
Interprets the rules of the theory as axioms of an algebraic theory

The usefulness of categories for semantics

> One can encode the syntax together with derivability using categories
The syntactic category: objects = contexts, morphisms = substitutions

> How to encode the type and terms of the theory?
Use an elaborate categorical construction: Categories with families (CwF)

> The syntactic category of the theory is a CwF
Encodes all the rules into a categorical device, comes with a notion of morphism

> Models of the theory : morphisms of CwF from the syntactic category to sets
Interprets the rules of the theory as axioms of an algebraic theory

Theorem
The models of the type-theoretic formulation of categories are the categories.

Motivations: When categories are insufficient
Some situation that ought to be categories

> paths in topological spaces

But: The composition is not associative

(pxq)srpr(qer)

Motivations: When categories are insufficient
Some situation that ought to be categories

> paths in topological spaces

The composition is associative up to homo-

topy
(p*xq)*xr=px(gxr)

Motivations: When categories are insufficient
Some situation that ought to be categories

> ldentity types in Martin-L6f type

> paths in topological spaces theory

trans: [[A:U, [[xy z: A,
X=y—=>y=zZ>3X=2
trans A x x x refl refl := refl

The composition is associative up to homo- But: Transitivity is not associative

topy
(p*q)%r=p*(qg*r) trans(trans p q) r # trans p (trans q r)

Motivations: When categories are insufficient
Some situation that ought to be categories

> ldentity types in Martin-L6f type

> paths in topological spaces theory

trans: [[A:U, [[xy z: A,
X=y—=>y=zZ>3X=2
trans A x x x refl refl := refl

- o There is a proof term for associativity
The composition is associative up to homo- o4 . [TA:U [xyzw:A,

topy [Ip:x=y, [lg:y=2z J][r:z=w,
(pxq)*r=px(qx*r) trans(trans p q) r = trans p (trans q r)

Higher categories

We can encode this defect into cells of higher dimension

Weak w-categories

Globular sets

Weak w-categories = globular sets + compositions

Globular sets
A globular set is composed of

> points (or objects) :

Globular sets
A globular set is composed of
> points (or objects) :
> arrows (or 1-cells) : « ——

Globular sets

A globular set is composed of
> points (or objects) :

> arrows (or 1-cells) : « ——
> 2-cells : /ﬂ\/l
~

Globular sets
A globular set is composed of

> points (or objects) :

> arrows (or 1-cells) : « ——
> 2-cells : /F

~
> 3-cells : @

_/r

Globular sets
A globular set is composed of
> points (or objects) :
> arrows (or 1-cells) : « ——

> 2-cells : /ﬂ\/l
~

/\
3-cells :
> 3-cells @

> etc

Globular sets
A globular set is composed of
> points (or objects) :
> arrows (or 1-cells) : « ——

> 2-cells : /l—l\’k
~

/\
3-cells :
> 3-cells @

> etc
T P
—
K\ Q}T
«E>

With compositions
We require that these cells compose

With compositions
We require that these cells compose
> Arrows:

With compositions
We require that these cells compose
> Arrows:

of

With compositions
We require that these cells compose
> Arrows:

of

> 2-cells:

Vertical composition

With compositions

We require that these cells compose

> Arrows:
£ of
S AR é [EUUUVVV VP *>g
> 2-cells:

Vertical composition

f
Y
I a

—g—

"B
h
¢
f

U‘ﬁola
N N

h

With compositions
We require that these cells compose

> Arrows:
of
> 2-cells:
Vertical composition Horizontal composition
f
oY ,
Ja f f
- TR AT
. Ja 5
NP, ST

:

U‘ﬁola
N N

h

With compositions
We require that these cells compose

> Arrows:
f
*f> L [EVVVVVIV VPPN L
> 2-cells:
Vertical composition Horizontal composition
f
m f f/
l} (83 T T
oy S v Lo
\U(_ﬁ/\ g g/
h
f
N flof
T
Ypora Yoog,
_/\ g’og

h

With compositions
We require that these cells compose

> Arrows:
f
*f> L [EVVVVVIV VPPN L
> 2-cells:
Vertical composition Horizontal composition
f
m f f/
l} (83 T T
oy S v Lo
\U(_ﬁ/\ g g/
h
f
N flof
T
Ypora Yoog,
_/\ g’og

h
> etc

Satisfying associativity

The compositions are required to be associative

Satisfying associativity
The compositions are required to be associative
> Arrows:

Satisfying associativity
The compositions are required to be associative
> Arrows: ’ o

The compositions are required to be associative
> Arrows:

Satisfying associativity

> 2-cells:

Vertical composition

Y
T

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
//ﬂ\)\ — —/ —

~ 1 @~ 1 ~" =

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
//ﬂ—\)\/ > T T

Exchange law

/D/L\
NN

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
//ﬂ—\)\/ > T T

Exchange law

/U\
NS

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
//ﬂ\)\ — —/ —

~ 1 @~ 1 ~" =

Exchange law

TN

—_—

Ny S

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
//ﬂ—\)\/ > T T

Exchange law

/U\
NS

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

Satisfying associativity
The compositions are required to be associative
> Arrows:

> 2-cells:
Vertical composition Horizontal composition
@ > T T

Exchange law

> etc

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

ho(gof)

/—\

B
b 12

(hog)of

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

Examples

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole

Examples

VI
——
R

Counter-Examples

The Grothendieck-Maltsiniotis definition [?]

> Existence of compositions:
Every pasting scheme can be composed

The Grothendieck-Maltsiniotis definition [?]

> Existence of compositions:
Every pasting scheme can be composed

> Generalized “Associativities™
Any two ways of composing a same pasting scheme are related by a higher cell

The Grothendieck-Maltsiniotis definition [?]

> Existence of compositions:
Every pasting scheme can be composed

> Generalized “Associativities™
Any two ways of composing a same pasting scheme are related by a higher cell

Formally:
These axioms are encoded in a category ©, defined by a universal property of formally
adding lifts for well-chosen pairs of morphisms.

The Grothendieck-Maltsiniotis definition [?]

> Existence of compositions:
Every pasting scheme can be composed

> Generalized “Associativities™
Any two ways of composing a same pasting scheme are related by a higher cell

Formally:
These axioms are encoded in a category ©, defined by a universal property of formally

adding lifts for well-chosen pairs of morphisms.

The weak w-categories are the presheaves over ©, that preserve a class of colimits.

The type theory CaTT

First Examples

coh comp (x:%) (y:*) (f:x->y) (z:%)(g:y->2) : x->z

First Examples

coh comp (x:*) (y:*) (f:x->y) (z:%)(g:y->2): x->z

~~
(Keyword: declaration of an operation

First Examples

io/}_l/ comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2) : x->z

Name of the operation
comp

Keyword: declaration of an operation

First Examples

io}_l/ comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2) : x->z

~~

Globular set

X f y g z
— —

Name of the operation
comp

Keyword: declaration of an operation

First Examples

io}_l/ comp (x:%) (y:*) (f:x->y) (z:%) (g:y->2) : x->z

Return type ‘/

X z
Globular set
X f y g z
—_— e —

Name of the operation
comp

Keyword: declaration of an operation

First Examples

coh comp (x:%) (y:*) (f:x->y) (z:%)(g:y->2) : x->z

X f y g z X comp f g z
e

Composition of two arrows

First Examples

coh comp (x:%) (y:*) (f:x->y) (z:%)(g:y->2) : x->z

X f y g z X comp f g z
e

Composition of two arrows

coh id (x:*) : x->x

First Examples

coh comp (x:%) (y:*) (f:x->y) (z:%)(g:y->2) : x->z

X f y g z X comp f g z
e

Composition of two arrows

coh id (x:*) : x->x

Identity of an object

Types for cells

In order to manipulate w-categories, we need:

Types for cells

In order to manipulate w-categories, we need:

> a type ~ for objects:
M

M

Types for cells

In order to manipulate w-categories, we need:

> a type ~ for objects:
re

M
> a type — for arrows:

M-t M+ u:
M- t—u

In order to manipulate w-categories, we need:

> a type ~ for objects:

> a type — for arrows:

> a type = for 2-cells:

re

re

M-t M+ u:
M- t—u

M=f:t—u MN-g:t—u

NrN-f=g¢g

Types for cells

Types for cells

In order to manipulate w-categories, we need:

> a type ~ for objects:
re

M
> a type — for arrows:
M=t: M-u:

M- t—u

> a type = for 2-cells:
M=f:t—u MN-g:t—u

NrN-f=g¢g

> etc

Types for cells

In order to manipulate w-categories, we need:

> a type x for objects:
re

[%

> a type — for all > 1-cells
=t A [Fu: A

M t—u
A

Contexts are diagrams!

Yy o5

f:x—y,

Contexts are diagrams!
z t:

g:x—z, h:z—t, k:t—x

XY,

Contexts are diagrams!
z t:

g:x—z, h:z—t, k:t—x

PS-contexts

> The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment I -y

PS-contexts

> The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment I -y

> This judgment is decidable with an algorithm

MFEps x T A
X ok bps X 1k F,y:A,f:X:)yl—pSf:X:W
rl_psf:XZU/ ersX:*

My T A M Fps

Source and target
Every ps-context I has a source 9~ (I') and a target 97 (I") (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

Source and target
Every ps-context I has a source 9~ (I') and a target 97 (I") (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

?
I_ X 7&()(% y g z
N
f3

Example

Source and target
Every ps-context I has a source 9~ (I') and a target 97 (I") (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

fi
7
a=() . «_&.,4%
o
Yo
I_ X 7,(_20(*> y g z
B
f3

Example

Source and target
Every ps-context I has a source 9~ (I') and a target 97 (I") (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

fi
VY
a=() . « £33
o
Vo
I_ Xﬁf;)t%y g z
B
. 1
at(r) . « £,
v
3

Interpretation

> Aterm I+ t: A corresponds to a composition of certain cells of T
More precisely: a cell in the weak w-catégory freely generated by the globular set
corresponding to I

Interpretation

> Aterm I+ t: A corresponds to a composition of certain cells of T
More precisely: a cell in the weak w-catégory freely generated by the globular set
corresponding to I

> Case of ps-contexts I Fpq:

NEt:A t is a way of composing completely the ps-
Var(t : A) = Var(l') context .

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

Rule for generating these compositions:

Mhps O (DFt:A 0 (N Fu:A Var(e: A) = Var(9-(T))
Var(u : A) = Var(97(I))

[Fop t—u
r,t A

—ru
A

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

Rule for generating these compositions:

Mhps O (DFt:A 0 (N Fu:A Var(e: A) = Var(9-(T))
Var(u : A) = Var(97(I))

[Fop t—u
r,t A

—ru
A

MN=x:xy:xf:x=y,z.%,8:y—z
* *

[+ comp : x—z

Example

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

> general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

> general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell
Rule for generating these associativities:

ers F=t: A lFu: A Var(t;A):Var(r)
[- coh Var(u : A) = Var(I)
r,

Ct—u
A

t—ru
A

Operations and coherences

> Existence of compositions:
Every pasting scheme can be composed

> general "Associativities": Any two ways of composing the same pasting scheme
are related by a higher cell
Rule for generating these associativities:

ers F=t: A lFu: A Var(t;A):Var(r)
Var(u : A) = Var(I)

[+ coh Ct—u
r, A

t—ru
A

F=x:xy:xf: XY, 21K 8 Y2z, W *, h: z—ow
I+ assoc : comp f (comp g h)—>comp (comp f g) h

Example

Encoding the theory

Recall the syntactic category: ScaTT
> objects = contexts of the theory CaTT

> morphisms = substitutions of the theory

This category carries a structure of CwF

Suspension in CaTT

A problem with CaTT

Writing in CaTT may be very tedious :

f
X~ x —y x x — ~ XW
y Ydg y
f

coh id (x:%):x->x coh id2 (x:*)(y:*) (f:x->y):f->f

Writing in CaTT may be very tedious :

f g gof
X ——y —— 2z ~ X—Z

coh comp (x:*)(y:*)(f:x->y)
(z:%)(g:y->2) 1x->2

A problem with CaTT

f f
o R
x—lf% y ~ x dasg y
S e

coh vecomp (x:*)(y:*)(f:x->y)(g:x->y)
(a:f->g) (h:x->y) (b:g->h) :£->h

Writing in CaTT may be very tedious :

foidy
x sy ~ x4
y Uy

f

coh unitl (x:*)(y:*)(f:x->y)
scomp (id x) £ -> £

A problem with CaTT

f
f /_\
o

X \ﬁf) y ~ Xidera =0 ay

g N
h
coh unitl2 (x:#) (y:*) (f:x->y) (g:x->y)
(a:f->g):vcomp (id f) a -> a

A solution: the suspension

Idea: Write only the left term and let the software generate the right one.

suspension
|

’coh id (x:%):x->x coh id2 (x:*)(y:*)(f:x—>y):f—>f‘

Practice: Generate the terms on the fly using the dimension of the argument.

coh id (x:%):x->x
~ | coh 1d2 (x:*) (y:*)(f:x->y):f->f
let ex (x:*)(y:*)(f:x->y)=1d2 £

coh id (x:#*):x->x
let ex (x:*)(y:*)(f:x->y)=id £

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (xp:*Yp: %) Y(Mx:A)=XIx:ZA

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (xp:*Yp: %) Y(Mx:A)=XIx:ZA

Yk = X0— Y0 Y(t—u)=Xt—Xu
* A A

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (xp:*Yp: %) Y(Mx:A)=XIx:ZA
Yk = Xg— Y0 Y(t—u)=Xt—Xu
* A A

Y x — x Y (cohr a[v]) = cohsr za[XA]

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of
the type theory.

YO = (xp:*Yp: %) Y(Mx:A)=XIx:ZA

Z*:X()j)yo (): —)ZU

Yx=x Y (cohr, A[’Y]) co h):r TAXA]
2(0) = (o = x0, 50 = y0) L((yx = 1)) = (T, x = 2t)

On contexts:

[[lustration

I >
X X0 X Yo
[] e — o
(x %) (X0 i, y0 1%, x: Xoj)/o)

[[lustration

On contexts:

r XTI
(x %) (x0 =%, ¥0 = %, X 2 X0 y0)

X X

L4 Y
0 Yo

\Lf‘ o |f o
N AN

o y

y

(x %y :ixf: x?y) (X0 1%, Y0 @ %, X Xo—Y0, Y Xo—>Yo, f 1 x—=Y)

Well-definedness of the suspension

YO = (x0: % Y0 *) Y(Mx:A)=XIx:ZA

* = Xp—Y0 (tju) to U
Yx =x Y (cohr aly]) = cohsrxa[XA]
Y(()) = (xo — x0,¥0 — Yo) Y((y,x = t)) = (Xvy,x — Xt)

Well-definedness of the suspension

YO = (x0: % Y0 *) Y(Mx:A)=XIx:ZA
* = Xp—Y0 (tju) to U
Yx =x Y (cohr aly]) = cohsrxa[XA]
Y({)) = (xo — x0, Y0 — Yo) Y((y,x = t)) = (Xvy,x — Xt)
Theorem (B., Mimram)
The following rules are derivable
e M-A Met:A Aby:T

XIE XITHXA YIEXt: XA YAFXy: XT

Well-definedness of the suspension

YO = (x0: % Y0 *) Y(Mx:A)=XIx:ZA
* = Xp—Y0 (tju) to U
Yx =x Y (cohr aly]) = cohsrxa[XA]
Y({)) = (xo — x0, Y0 — Yo) Y((y,x = t)) = (Xvy,x — Xt)
Theorem (B., Mimram)
The following rules are derivable
e M-A Met:A Aby:T

XIE XITHXA YIEXt: XA YAFXy: XT

Proof.

By induction over the rules of the theory

Example: A development using the suspension

coh id (x:%):x->x

coh comp (x:*)(y:*)(f:x->y)(z:%)(g:y->2) :x->z

coh unit (x:#)(y:*)(f:x->y):comp (id x) £ -> £

let unit2 (x:*) (y:*%)(f:x->y)(g:x->y) (a:f->g)=unit a

Example: A development using the suspension

coh id (x:%):x->x

coh comp (x:*)(y:*)(f:x->y)(z:%)(g:y->2) :x->z

coh unit (x:#)(y:*)(f:x->y):comp (id x) £ -> £

let unit2 (x:*) (y:*%)(f:x->y)(g:x->y) (a:f->g)=unit a

Internally:

Example: A development using the suspension

coh id (x:%):x->x

coh comp (x:*)(y:*)(f:x->y)(z:%)(g:y->2) :x->z

coh unit (x:#)(y:*)(f:x->y):comp (id x) £ -> £

let unit2 (x:*) (y:*%)(f:x->y)(g:x->y) (a:f->g)=unit a

Internally:

> The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 ~~ suspend once

Example: A development using the suspension

coh id (x:%):x->x

coh comp (x:*)(y:*)(f:x->y)(z:%)(g:y->2) :x->z

coh unit (x:#)(y:*)(f:x->y):comp (id x) £ -> £

let unit2 (x:*) (y:*%)(f:x->y)(g:x->y) (a:f->g)=unit a

Internally:

> The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 ~~ suspend once

> Compute the suspension of unit

Example: A development using the suspension

coh id (x:%):x->x

coh comp (x:*)(y:*)(f:x->y)(z:%)(g:y->2) :x->z

coh unit (x:#)(y:*)(f:x->y):comp (id x) £ -> £

let unit2 (x:*) (y:*%)(f:x->y)(g:x->y) (a:f->g)=unit a

Internally:

> The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 ~~ suspend once

> Compute the suspension of unit

> Compute the suspension of comp

Example: A development using the suspension

coh id (x:%):x->x

coh comp (x:*)(y:*)(f:x->y)(z:%)(g:y->2) :x->z

coh unit (x:#)(y:*)(f:x->y):comp (id x) £ -> £

let unit2 (x:*) (y:*%)(f:x->y)(g:x->y) (a:f->g)=unit a

Internally:

> The system computes the difference in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2 ~~ suspend once

> Compute the suspension of unit
> Compute the suspension of comp

> compute the suspension of id

A categorical view on the suspension

Recall:
> Information about the derivable syntax is stored in the syntactic category

> The suspension defined on the syntax respects the derivability

A categorical view on the suspension

Recall:
> Information about the derivable syntax is stored in the syntactic category
> The suspension defined on the syntax respects the derivability

L The suspension lifts on the category syntactic

A categorical view on the suspension

Recall:
> Information about the derivable syntax is stored in the syntactic category
> The suspension defined on the syntax respects the derivability

L The suspension lifts on the category syntactic

bn
ScaTT >0, ScaTT

Y () is a morphism of CwF

A categorical view on the suspension

Recall:
> Information about the derivable syntax is stored in the syntactic category
> The suspension defined on the syntax respects the derivability

L The suspension lifts on the category syntactic

bn
ScaTT >0, ScaTT

Y () is a morphism of CwF

See the semantics

Another example: The functorialization

The functorialization is another meta-operation on the syntax

Another example: The functorialization

The functorialization is another meta-operation on the syntax

It translates another property of the theory of weak w-categories
The operations in a higher category define functors

Another example: The functorialization

The functorialization is another meta-operation on the syntax

It translates another property of the theory of weak w-categories
The operations in a higher category define functors

Problem: This operation is not always well-defined. It only defines a partial
endomorphism of CwFs

Semantics

The Grothendieck-Maltsiniotis definition of w-categories

> Define the category ©¢ of pasting schemes
Characterized as colimits: globular sums

> Complete it into the category O
Add lift conditions, while preserving globular sums. The extension ©g — O

defined by universal property

> The weak w-categories are functors ©., — Set which preserve the globular sums

A categorical view of ps-contexts

Define the full subcategory Sps < Scat:
> objects=ps-contexts

A categorical view of ps-contexts
Define the full subcategory Sps < Scat:
> objects=ps-contexts

Theorem (Finster, Mimram)

There is an equivalence of categories @8p ~ Spso

A categorical view of ps-contexts

Define the full subcategory Sps < Scat:
> objects=ps-contexts

Theorem (Finster, Mimram)

There is an equivalence of categories @8p ~ Spso

Note: Sps g is the category Sps removing all non-variable terms

Ps-contexts with coherences

Theorem (B., Finster, Mimram)

There is an equivalence of categories ©25 ~ Spg

Proof.
> The inclusion Sps o — Sps preserves the globular products

> The inclusion Sps o — Sps satisfies the universal property dual of the inclusion
@o — @oo

The syntactic category ScatT

Theorem (B., Finster, Mimram)
The inclusion functor Sps — ScaTT is codense

The syntactic category ScatT

Theorem (B., Finster, Mimram)
The inclusion functor Sps — ScaTT is codense

The syntactic category ScatT

Theorem (B., Finster, Mimram)
The inclusion functor Sps — ScaTT is codense

Every context is canonically a limit of ps-contexts

A universal property of the extension

Corollary
The inclusion functor Sps < Scat1T1 induces an equivalence of categories

[SCaTT; Set]r:anonir:al fimits = [SPS7 Set]globular products

SCaTT canonical limits ‘ Set

ET
jJ\ ... globular products
Sps

The models of CaTT

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the weak w-categories

The models of CaTT

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the weak w-categories

Proof.

[SCaTT7 Set]CWF = [SCaTT7 Set]canonical limits

The models of CaTT

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the weak w-categories

Proof.

[SCaTT7 Set]CWF = [SCaTT7 Set]canonical limits
= [SP57 Set]globular products

The models of CaTT

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the weak w-categories

Proof.

[SCaTT7 Set]CWF = [SCaTT7 Set]canonical limits
= [SP57 Set]globular products
~ [0, Set]globular sums

Thank you!

	Introduction
	Weak -categories
	The type theory CaTT
	Suspension in CaTT
	Semantics
	Thank you!

