CaTT: A type theoretic approach to weak ω-categories

Thibaut Benjamin, Eric Finster, Samuel Mimram

12 February 2021
Seminaire polygraphes, categories superieures

Introduction

The panorama

The panorama

Motivations: A bit of category theory

Categories are made of

Motivations: A bit of category theory

Categories are made of objects
-

Motivations: A bit of category theory

Categories are made of objects
arrows
$\bullet \longrightarrow$

Motivations: A bit of category theory

Categories are made of objects
-

arrows

$\bullet \longrightarrow \bullet$

Motivations: A bit of category theory

Categories are made of objects
arrows
$\bullet \longrightarrow$

Equipped with identities
$x \rightsquigarrow x \xrightarrow{\mathrm{id}_{x}} x$

Motivations: A bit of category theory

Categories are made of objects -

```
arrows
```

$\bullet \longrightarrow$

Equipped with identities
$x \rightsquigarrow x \xrightarrow{\mathrm{id}_{x}} x$
compositions
$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$

Motivations: A bit of category theory

Categories are made of objects
-

```
arrows
```

$\bullet \longrightarrow$

Equipped with identities
$x \leadsto x \xrightarrow{\text { id }_{x}} x$
compositions
$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{\text { gof }} z$

Satisfying

Motivations: A bit of category theory

Categories are made of objects -

```
arrows
```

$\bullet \longrightarrow$

Equipped with identities
$x \rightsquigarrow x \xrightarrow{\mathrm{id}_{x}} x$
compositions
$x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$

Satisfying
unitality
$f \circ \mathrm{id}_{x}=f=\mathrm{id}_{y} \circ f$

Motivations: A bit of category theory

Categories are made of
objects \bullet

Equipped with identities

$$
x \rightsquigarrow x \xrightarrow{i d_{x}} x
$$

Satisfying
unitality
$f \circ \mathrm{id}_{x}=f=\mathrm{id}_{y} \circ f$
arrows
$\bullet \longrightarrow$

compositions

$$
x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z
$$

associativity
$h \circ(g \circ f)=(h \circ g) \circ f$

A few example of categories

\triangleright The category of sets: objects $=$ sets, morphisms $=$ functions

A few example of categories

\triangleright The category of sets: objects $=$ sets, morphisms $=$ functions
\triangleright The category of groups: objects = groups, morphisms = group homomorphisms

A few example of categories

\triangleright The category of sets: objects $=$ sets, morphisms $=$ functions
\triangleright The category of groups: objects $=$ groups, morphisms $=$ group homomorphisms
\triangleright The category of vector spaces: objects $=$ vector spaces, morphisms $=$ linear maps

A few example of categories

\triangleright The category of sets: objects $=$ sets, morphisms $=$ functions
\triangleright The category of groups: objects $=$ groups, morphisms $=$ group homomorphisms
\triangleright The category of vector spaces: objects $=$ vector spaces, morphisms $=$ linear maps
\triangleright The category of metro itineraries: objects $=$ metro stations, morphisms $=$ metro itineraries

A few example of categories

\triangleright The category of sets: objects $=$ sets, morphisms $=$ functions
\triangleright The category of groups: objects $=$ groups, morphisms $=$ group homomorphisms
\triangleright The category of vector spaces: objects $=$ vector spaces, morphisms $=$ linear maps
\triangleright The category of metro itineraries: objects $=$ metro stations, morphisms $=$ metro itineraries
\triangleright The syntactic category of a type theory : objects $=$ contexts, morphisms $=$ substitutions

A few example of categories

\triangleright The category of sets: objects $=$ sets, morphisms $=$ functions
\triangleright The category of groups: objects $=$ groups, morphisms $=$ group homomorphisms
\triangleright The category of vector spaces: objects $=$ vector spaces, morphisms $=$ linear maps
\triangleright The category of metro itineraries: objects $=$ metro stations, morphisms $=$ metro itineraries
\triangleright The syntactic category of a type theory : objects = contexts, morphisms = substitutions
\triangleright Every monoid M is a category : objects $=\{\bullet\}$, morphisms $=M$.

Motivations：Why categories？

Categories are ubiquitous，they are notably useful for：

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
\triangleright Modeling functional programming (objects $=$ types, morphisms $=\lambda$-terms)

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
\triangleright Modeling functional programming (objects $=$ types, morphisms $=\lambda$-terms)
\triangleright Encoding propositions and implications

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
\triangleright Modeling functional programming (objects $=$ types, morphisms $=\lambda$-terms)
\triangleright Encoding propositions and implications
\triangleright Defining algebraic structures

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
\triangleright Modeling functional programming (objects $=$ types, morphisms $=\lambda$-terms)
\triangleright Encoding propositions and implications
\triangleright Defining algebraic structures
\triangleright And many other things...

Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:
\triangleright Modeling functional programming (objects $=$ types, morphisms $=\lambda$-terms)
\triangleright Encoding propositions and implications
\triangleright Defining algebraic structures
\triangleright And many other things...
Provide a common framework to study programming languages, logic and algebra \longrightarrow Semantics

Foreshadowing: Type theoretic formulation of categories

Categories are made of
objects
-

Equipped with identities
$x \rightsquigarrow x \xrightarrow{i d_{x}} x$

Satisfying
unitality
$f \circ \mathrm{id}_{x}=f=\mathrm{id}_{y} \circ f$
arrows
$\bullet \longrightarrow \bullet$

compositions

$$
x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z
$$

associativity
$h \circ(g \circ f)=(h \circ g) \circ f$

Foreshadowing：Type theoretic formulation of categories

Categories are made of
objects
$\Gamma \vdash$「トぇ

Equipped with identities

$$
x \leadsto x \xrightarrow{\mathrm{id}_{x}} x
$$

Satisfying
unitality
$f \circ \mathrm{id}_{x}=f=i d_{y} \circ f$
arrows
$\bullet \longrightarrow \bullet$
compositions

$$
x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z
$$

associativity
$h \circ(g \circ f)=(h \circ g) \circ f$

Foreshadowing: Type theoretic formulation of categories

Categories are made of
objects
$\stackrel{\Gamma \vdash}{\Gamma \vdash \star}$
Equipped with identities
$x \rightsquigarrow x \xrightarrow{\mathrm{id}_{x}} x$

Satisfying
unitality
$f \circ \mathrm{id}_{x}=f=\mathrm{id}_{y} \circ f$
arrows

compositions

$$
x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z
$$

associativity

$h \circ(g \circ f)=(h \circ g) \circ f$

Foreshadowing: Type theoretic formulation of categories

Categories are made of
objects
$\stackrel{\Gamma \vdash}{\Gamma \vdash \star}$
Equipped with identities
$\Gamma \vdash x: \star$
$\Gamma \vdash \operatorname{id}(x): x \rightarrow x$

Satisfying
unitality
$f \circ \mathrm{id}_{x}=f=\mathrm{id}_{y} \circ f$
arrows

compositions

$$
x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z
$$

associativity

$h \circ(g \circ f)=(h \circ g) \circ f$

Foreshadowing: Type theoretic formulation of categories

Categories are made of
objects
$\frac{\Gamma \vdash}{\Gamma \vdash \star}$

Equipped with identities

$$
\frac{\Gamma \vdash x: \star}{\Gamma \vdash \operatorname{id}(x): x \rightarrow x}
$$

Satisfying
unitality
$f \circ \mathrm{id}_{x}=f=\mathrm{id}_{y} \circ f$
arrows

compositions

$$
\frac{\Gamma \vdash f: x \rightarrow y \quad \Gamma \vdash g: y \rightarrow z}{\Gamma \vdash g \circ f: x \rightarrow z}
$$

associativity
$h \circ(g \circ f)=(h \circ g) \circ f$

Foreshadowing: Type theoretic formulation of categories
Categories are made of
objects
$\frac{\Gamma \vdash}{\Gamma \vdash \star}$

Equipped with identities

$$
\frac{\Gamma \vdash x: \star}{\Gamma \vdash \operatorname{id}(x): x \rightarrow x}
$$

Satisfying unitality

$$
\frac{\Gamma \vdash f: x \rightarrow y}{\Gamma \vdash f \circ \operatorname{id}(x) \equiv f \equiv \operatorname{id}(y) \circ f}
$$

arrows

compositions

$$
\frac{\Gamma \vdash f: x \rightarrow y \quad \Gamma \vdash g: y \rightarrow z}{\Gamma \vdash g \circ f: x \rightarrow z}
$$

associativity
$h \circ(g \circ f)=(h \circ g) \circ f$

Foreshadowing: Type theoretic formulation of categories
Categories are made of
objects
$\frac{\Gamma \vdash}{\Gamma \vdash \star}$

Equipped with identities

$$
\frac{\Gamma \vdash x: \star}{\Gamma \vdash \operatorname{id}(x): x \rightarrow x}
$$

Satisfying unitality

$$
\frac{\Gamma \vdash f: x \rightarrow y}{\Gamma \vdash f \circ \operatorname{id}(x) \equiv f \equiv \operatorname{id}(y) \circ f}
$$

arrows

compositions

$$
\frac{\Gamma \vdash f: x \rightarrow y \quad \Gamma \vdash g: y \rightarrow z}{\Gamma \vdash g \circ f: x \rightarrow z}
$$

associativity

$\frac{\Gamma \vdash f: x \rightarrow y \quad \Gamma \vdash g: y \rightarrow z \quad \Gamma \vdash h: z \rightarrow w}{\Gamma \vdash h \circ(g \circ f) \equiv(h \circ g) \circ f}$

The usefulness of categories for semantics

\triangleright One can encode the syntax together with derivability using categories The syntactic category: objects $=$ contexts, morphisms $=$ substitutions

The usefulness of categories for semantics

\triangleright One can encode the syntax together with derivability using categories The syntactic category: objects $=$ contexts, morphisms $=$ substitutions
\triangleright How to encode the type and terms of the theory? Use an elaborate categorical construction: Categories with families (CwF)

The usefulness of categories for semantics

\triangleright One can encode the syntax together with derivability using categories The syntactic category: objects $=$ contexts, morphisms $=$ substitutions
\triangleright How to encode the type and terms of the theory? Use an elaborate categorical construction: Categories with families (CwF)
\triangleright The syntactic category of the theory is a CwF Encodes all the rules into a categorical device, comes with a notion of morphism

The usefulness of categories for semantics

\triangleright One can encode the syntax together with derivability using categories The syntactic category: objects $=$ contexts, morphisms $=$ substitutions
\triangleright How to encode the type and terms of the theory? Use an elaborate categorical construction: Categories with families (CwF)
\triangleright The syntactic category of the theory is a CwF Encodes all the rules into a categorical device, comes with a notion of morphism
\triangleright Models of the theory : morphisms of CwF from the syntactic category to sets Interprets the rules of the theory as axioms of an algebraic theory

The usefulness of categories for semantics

\triangleright One can encode the syntax together with derivability using categories The syntactic category: objects $=$ contexts, morphisms $=$ substitutions
\triangleright How to encode the type and terms of the theory? Use an elaborate categorical construction: Categories with families (CwF)
\triangleright The syntactic category of the theory is a CwF Encodes all the rules into a categorical device, comes with a notion of morphism
\triangleright Models of the theory : morphisms of CwF from the syntactic category to sets Interprets the rules of the theory as axioms of an algebraic theory

Theorem
The models of the type-theoretic formulation of categories are the categories.

Motivations: When categories are insufficient
Some situation that ought to be categories
\triangleright paths in topological spaces

But: The composition is not associative

$$
(p * q) * r \neq p *(q * r)
$$

Motivations: When categories are insufficient
Some situation that ought to be categories
\triangleright paths in topological spaces

The composition is associative up to homotopy

$$
(p * q) * r \Rightarrow p *(q * r)
$$

Motivations: When categories are insufficient

Some situation that ought to be categories
\triangleright paths in topological spaces

$$
\begin{aligned}
& \text { trans }: \prod A: \mathcal{U}, \prod x y z: A \\
& x=y \rightarrow y=z \rightarrow x=z \\
& \text { trans } A \times x \times \text { refl refl }:=\text { refl }
\end{aligned}
$$

The composition is associative up to homotopy

$$
(p * q) * r \Rightarrow p *(q * r)
$$

\triangleright Identity types in Martin-Löf type theory

But: Transitivity is not associative
$\operatorname{trans}(\operatorname{trans} p q) r \not \equiv \operatorname{trans} p(\operatorname{trans} q r)$

Motivations: When categories are insufficient

Some situation that ought to be categories
\triangleright paths in topological spaces
\triangleright Identity types in Martin-Löf type theory

$$
\begin{aligned}
& \text { trans }: \prod A: \mathcal{U}, \prod x y z: A \\
& x=y \rightarrow y=z \rightarrow x=z \\
& \text { trans } A \times x \times \text { refl refl }:=\text { refl }
\end{aligned}
$$

There is a proof term for associativity assoc: $\Pi A: \mathcal{U}, \Pi x y z w: A$, $\prod p: x=y, \Pi q: y=z, \Pi r: z=w$, trans $(\operatorname{trans} p q) r=\operatorname{trans} p(\operatorname{trans} q r)$

The composition is associative up to homotopy

$$
(p * q) * r \Rightarrow p *(q * r)
$$

Higher categories

We can encode this defect into cells of higher dimension

Weak ω-categories

Globular sets

Weak ω-categories $=$ globular sets + compositions

Globular sets

A globular set is composed of
\triangleright points (or objects) :

Globular sets

A globular set is composed of
\triangleright points (or objects) :
\triangleright arrows (or 1-cells) :

Globular sets

A globular set is composed of
\triangleright points (or objects) :
\triangleright arrows (or 1-cells) :
\triangleright 2-cells : $\stackrel{\Downarrow}{\Downarrow}$

Globular sets

A globular set is composed of
\triangleright points (or objects) :
\triangleright arrows (or 1-cells) :
$\triangleright 2$-cells : $\xrightarrow{\Downarrow}$
\triangleright 3-cells:

Globular sets

A globular set is composed of
\triangleright points (or objects) :
\triangleright arrows (or 1-cells) :
\triangleright 2-cells :

\triangleright 3-cells:

\triangleright etc

Globular sets

A globular set is composed of
\triangleright points（or objects）：
\triangleright arrows（or 1－cells）：
$\triangleright 2$－cells ：$\stackrel{\Downarrow}{\square}$
\triangleright 3－cells：

\triangleright etc

With compositions

We require that these cells compose

With compositions

We require that these cells compose
\triangleright Arrows:

With compositions

We require that these cells compose
\triangleright Arrows:

With compositions

We require that these cells compose
\triangleright Arrows:
$\stackrel{\times}{\bullet} \xrightarrow{f} \stackrel{y}{\circ} \xrightarrow{g}{ }^{\text {® }}$ -
\triangleright 2-cells:
Vertical composition

With compositions

We require that these cells compose
\triangleright Arrows:

$$
\stackrel{\times}{\circ} \xrightarrow{f} \stackrel{y}{ } \xrightarrow{g}{ }^{z} \text {-mmmmum } \stackrel{\times}{ } \xrightarrow{g \circ f} \text { ? }
$$

- 2-cells:

> Vertical composition

With compositions

We require that these cells compose
\triangleright Arrows:

- 2-cells:
Vertical composition Horizontal composition

With compositions

We require that these cells compose
\triangleright Arrows:

- 2-cells:
Vertical composition Horizontal composition

$\xrightarrow[g^{\prime} \circ g]{\mathbb{\|}_{\beta \circ 0 \alpha}}$

With compositions

We require that these cells compose
\triangleright Arrows:

- 2-cells:
Vertical composition Horizontal composition

$\xrightarrow[g^{\prime} \circ g]{\mathbb{y}_{\rho_{0} \alpha}}$
\triangleright etc

Satisfying associativity

The compositions are required to be associative

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:
\qquad \longrightarrow \longrightarrow

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:
\triangleright 2-cells:
Vertical composition

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows：
$\bullet \longrightarrow$ \qquad $\bullet \longrightarrow$ －
\triangleright 2－cells：

Vertical composition

Horizontal composition

－

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:
$\bullet \longrightarrow$ \qquad $\bullet \longrightarrow$ -
\triangleright 2-cells:

Vertical composition

Horizontal composition

-

 -

Exchange law

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows：

\qquad $\bullet \longrightarrow$ －
\triangleright 2－cells：

Vertical composition

Horizontal composition
。

 －

Exchange law

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:
$\bullet \longrightarrow$ \qquad $\bullet \longrightarrow$ -
\triangleright 2-cells:

Vertical composition

Horizontal composition

-

 -

Exchange law

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:
$\bullet \longrightarrow$ \qquad $\bullet \longrightarrow$ -
\triangleright 2-cells:

Vertical composition

Horizontal composition

-

 -

Exchange law

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows：
$\bullet \longrightarrow$ \qquad $\bullet \longrightarrow$ －
\triangleright 2－cells：

Vertical composition

Horizontal composition

－

 －

Exchange law

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:
$\bullet \longrightarrow$ \qquad $\bullet \longrightarrow$ -
\triangleright 2-cells:

Vertical composition

Horizontal composition

-

 -

Exchange law

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:
$\bullet \longrightarrow$ \qquad $\bullet \longrightarrow$ -
\triangleright 2-cells:

Vertical composition

Horizontal composition

-

 -

Exchange law

Satisfying associativity

The compositions are required to be associative
\triangleright Arrows:
\qquad - \qquad $\bullet \longrightarrow$ -
\triangleright 2-cells:

Vertical composition

Horizontal composition

-

 -

Exchange law

etc

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully composed

They are well-ordered and do not have any hole

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully composed

They are well-ordered and do not have any hole

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully composed

They are well－ordered and do not have any hole

The Grothendieck-Maltsiniotis definition [?]

\triangleright Existence of compositions:
Every pasting scheme can be composed

The Grothendieck-Maltsiniotis definition [?]

\triangleright Existence of compositions:
Every pasting scheme can be composed
\triangleright Generalized "Associativities":
Any two ways of composing a same pasting scheme are related by a higher cell

The Grothendieck-Maltsiniotis definition [?]

\triangleright Existence of compositions:
Every pasting scheme can be composed
\triangleright Generalized "Associativities":
Any two ways of composing a same pasting scheme are related by a higher cell

Formally:
These axioms are encoded in a category Θ_{∞} defined by a universal property of formally adding lifts for well-chosen pairs of morphisms.

The Grothendieck-Maltsiniotis definition [?]

\triangleright Existence of compositions:
Every pasting scheme can be composed
\triangleright Generalized "Associativities":
Any two ways of composing a same pasting scheme are related by a higher cell

Formally:
These axioms are encoded in a category Θ_{∞} defined by a universal property of formally adding lifts for well-chosen pairs of morphisms.

The weak ω-categories are the presheaves over Θ_{∞} that preserve a class of colimits.

The type theory CaTT

First Examples
$\operatorname{coh} \operatorname{comp}(\mathrm{x}: *)(\mathrm{y}: *)(\mathrm{f}: \mathrm{x}->\mathrm{y})(\mathrm{z}: *)(\mathrm{g}: \mathrm{y}->\mathrm{z}): \mathrm{x}->\mathrm{z}$

First Examples

$\underbrace{\text { coh }} \operatorname{comp}(\mathrm{x}: *)(\mathrm{y}: *)(\mathrm{f}: \mathrm{x}->\mathrm{y})(\mathrm{z}: *)(\mathrm{g}: \mathrm{y}->\mathrm{z}): \mathrm{x}->\mathrm{z}$

Keyword: declaration of an operation

First Examples

Keyword: declaration of an operation

First Examples

First Examples

First Examples

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

$$
\stackrel{x}{\bullet} \stackrel{y}{\longrightarrow} \xrightarrow{g} \stackrel{z}{\bullet} \quad \stackrel{x}{\circ} \xrightarrow{\text { comp } f g} \stackrel{z}{\square}
$$

Composition of two arrows

First Examples

coh comp ($\mathrm{x}: *)(\mathrm{y}: *)(\mathrm{f}: \mathrm{x}->\mathrm{y})(\mathrm{z}: *)(\mathrm{g}: \mathrm{y}->\mathrm{z}): \mathrm{x}->\mathrm{z}$

Composition of two arrows
coh id ($\mathrm{x}: *$) : $\mathrm{x}->\mathrm{x}$

First Examples

```
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
```

$$
\stackrel{f}{\bullet} \stackrel{y}{\bullet} \xrightarrow{g} \stackrel{x}{\circ} \xrightarrow{\text { comp } f g} z
$$

Composition of two arrows
coh id ($x: *$) : $x->x$

Identity of an object

Types for cells

In order to manipulate ω-categories, we need:

Types for cells

In order to manipulate ω-categories, we need:
\triangleright a type $*$ for objects:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star}
$$

Types for cells

In order to manipulate ω-categories, we need:
\triangleright a type $*$ for objects:
\triangleright a type \rightarrow for arrows:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star}
$$

$$
\frac{\Gamma \vdash t: \star \quad \Gamma \vdash u: \star}{\Gamma \vdash t \rightarrow u}
$$

Types for cells

In order to manipulate ω-categories, we need:
\triangleright a type $*$ for objects:
\triangleright a type \rightarrow for arrows:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star}
$$

$$
\frac{\Gamma \vdash t: \star \quad \Gamma \vdash u: \star}{\Gamma \vdash t \rightarrow u}
$$

\triangleright a type \Rightarrow for 2-cells:

$$
\frac{\Gamma \vdash f: t \rightarrow u \quad \Gamma \vdash g: t \rightarrow u}{\Gamma \vdash f \Rightarrow g}
$$

Types for cells

In order to manipulate ω-categories, we need:
\triangleright a type $*$ for objects:
\triangleright a type \rightarrow for arrows:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star}
$$

$$
\frac{\Gamma \vdash t: \star \quad \Gamma \vdash u: \star}{\Gamma \vdash t \rightarrow u}
$$

\triangleright a type \Rightarrow for 2-cells:

$$
\frac{\Gamma \vdash f: t \rightarrow u \quad \Gamma \vdash g: t \rightarrow u}{\Gamma \vdash f \Rightarrow g}
$$

\triangleright etc

Types for cells

In order to manipulate ω－categories，we need：
\triangleright a type \star for objects：
\triangleright a type \rightarrow for all \geq 1－cells

$$
\frac{\Gamma \vdash}{\Gamma \vdash \star}
$$

$$
\frac{\Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash t \underset{A}{u}}
$$

Contexts are diagrams!
$\Gamma\left\{\begin{array}{llll}x: \star, & y: \star, & z: \star, & t: \star \\ & & z \\ & & \\ & & \\ x & y & \end{array}\right.$

Contexts are diagrams!

$$
\Gamma\left\{\begin{array}{llll}
x: \star, & y: \star, & z: \star, & t: \star \\
f_{1}: x \rightarrow y, & f_{2}: x \rightarrow y, & g: x \rightarrow z, & h: z \rightarrow t, \\
& & k: t \rightarrow x \\
& &
\end{array}\right.
$$

Contexts are diagrams!

$$
\Gamma\left\{\begin{array}{lll}
x: \star, & y: \star, & z: \star, \\
f_{1}: x \rightarrow y, & t: \star \\
\alpha: f_{\star}: x \rightarrow y, & g: x \rightarrow z, \quad h: z \rightarrow t, \quad k: t \rightarrow x \\
& f_{\star \rightarrow} f_{\star}
\end{array}\right.
$$

PS-contexts

\triangleright The ps-contexts are the contexts corresponding to pasting schemes.
They are recognized by a judgment $\Gamma \vdash_{\text {ps }}$

PS-contexts

\triangleright The ps-contexts are the contexts corresponding to pasting schemes.
They are recognized by a judgment $\Gamma \vdash_{\text {ps }}$
\triangleright This judgment is decidable with an algorithm

$$
\begin{array}{cc}
\overline{x: \star \vdash_{\mathrm{ps}} x: \star} & \Gamma \vdash_{\mathrm{ps}} x: A \\
\frac{\Gamma \vdash_{\mathrm{ps}} f: x \rightarrow \underset{A}{ } y}{\Gamma, y: A, f: x \rightarrow_{A} y \vdash_{\mathrm{ps}} f: x \rightarrow \underset{A}{ } y} \\
\hline \Gamma \vdash_{\mathrm{ps}} y: A & \frac{\Gamma \vdash_{\mathrm{ps}} x: \star}{\Gamma \vdash_{\mathrm{ps}}}
\end{array}
$$

Source and target

Every ps-context Γ has a source $\partial^{-}(\Gamma)$ and a target $\partial^{+}(\Gamma)$ (which are ps-contexts themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

Source and target

Every ps-context Γ has a source $\partial^{-}(\Gamma)$ and a target $\partial^{+}(\Gamma)$ (which are ps-contexts themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

Example

Source and target

Every ps-context Γ has a source $\partial^{-}(\Gamma)$ and a target $\partial^{+}(\Gamma)$ (which are ps-contexts themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

Example

Source and target

Every ps-context Γ has a source $\partial^{-}(\Gamma)$ and a target $\partial^{+}(\Gamma)$ (which are ps-contexts themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target

Example

Interpretation

$\triangleright A$ term $\Gamma \vdash t: A$ corresponds to a composition of certain cells of Γ. More precisely: a cell in the weak ω-catégory freely generated by the globular set corresponding to Γ.

Interpretation

$\triangleright A$ term $\Gamma \vdash t: A$ corresponds to a composition of certain cells of Γ. More precisely: a cell in the weak ω-catégory freely generated by the globular set corresponding to Γ.
\triangleright Case of ps-contexts $\Gamma \vdash_{\mathrm{ps}}$:

$$
\left.\begin{array}{l}
\Gamma \vdash t: A \\
\operatorname{Var}(t: A)=\operatorname{Var}(\Gamma)
\end{array}\right\} \quad \begin{aligned}
& t \text { is a way of composing completely the ps- } \\
& \text { context } \Gamma .
\end{aligned}
$$

Operations and coherences

\triangleright Existence of compositions：
Every pasting scheme can be composed

Operations and coherences

\triangleright Existence of compositions:
Every pasting scheme can be composed

Rule for generating these compositions:

$$
\begin{aligned}
\Gamma \vdash_{\mathrm{ps}} & \partial^{-}(\Gamma) \vdash t: A & \partial^{+}(\Gamma) \vdash u: A \\
\Gamma \vdash \mathrm{op}_{\Gamma, t \rightarrow A_{A}}: t_{A} u & & \operatorname{Var}(t: A)=\operatorname{Var}\left(\partial^{-}(\Gamma)\right) \\
& & \operatorname{Var}(u: A)=\operatorname{Var}\left(\partial^{+}(\Gamma)\right)
\end{aligned}
$$

Operations and coherences

\triangleright Existence of compositions:
Every pasting scheme can be composed

Rule for generating these compositions:

$$
\begin{aligned}
& \Gamma \vdash_{\mathrm{ps}} \quad \partial^{-}(\Gamma) \vdash t: A \quad \partial^{+}(\Gamma) \vdash u: A \quad \operatorname{Var}(t: A)=\operatorname{Var}\left(\partial^{-}(\Gamma)\right) \\
& \Gamma \vdash \mathrm{op}_{\Gamma, t \rightarrow \vec{A}}: t \underset{A}{ } u \\
& \operatorname{Var}(u: A)=\operatorname{Var}\left(\partial^{+}(\Gamma)\right) \\
& \Gamma=x: \star, y: \star, f: \underset{\star}{x \rightarrow} y, z: \star, g: \underset{\star}{y \rightarrow z} \\
& \Gamma \vdash \text { comp : } x \rightarrow z
\end{aligned}
$$

Operations and coherences

\triangleright Existence of compositions:
Every pasting scheme can be composed
\triangleright general "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Operations and coherences

\triangleright Existence of compositions:
Every pasting scheme can be composed
\triangleright general "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Rule for generating these associativities:

$$
\begin{array}{rlrl}
\Gamma \vdash_{\mathrm{ps}} \Gamma \vdash t: A & \Gamma \vdash u: A \\
\Gamma \vdash \operatorname{coh}_{\Gamma, t \rightarrow A}: t \underset{A}{ } u & \operatorname{Var}(t: A) & =\operatorname{Var}(\Gamma) \\
\operatorname{Var}(u: A) & =\operatorname{Var}(\Gamma)
\end{array}
$$

Operations and coherences

\triangleright Existence of compositions:
Every pasting scheme can be composed
\triangleright general "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Rule for generating these associativities:

$$
\begin{aligned}
& \frac{\Gamma \vdash_{\mathrm{ps}} \Gamma \vdash t: A \quad \Gamma \vdash u: A}{\Gamma \vdash \operatorname{coh}_{\Gamma, t \rightarrow \underset{A}{ } u}: t_{A} u} \quad \operatorname{Var}(t: A)=\operatorname{Var}(\Gamma) \\
& \operatorname{Var}(u: A)=\operatorname{Var}(\Gamma) \\
& \Gamma=x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z, w: \star, h: z \rightarrow w \\
& \Gamma \vdash \text { assoc }: \operatorname{comp} f(\operatorname{comp} g h) \rightarrow \operatorname{comp}(\operatorname{comp} f \underset{\star}{\star}) \mathrm{h}
\end{aligned}
$$

Encoding the theory

Recall the syntactic category: $\mathcal{S}_{\text {CaTT }}$
\triangleright objects $=$ contexts of the theory CaTT
\triangleright morphisms $=$ substitutions of the theory

This category carries a structure of CwF

Suspension in CaTT

A problem with CaTT

Writing in CaTT may be very tedious :

$$
\begin{aligned}
& x \leadsto x \xrightarrow{i d_{x}} x \\
& \text { coh id }(x: *): x->x
\end{aligned}
$$

$$
\begin{aligned}
& x \xrightarrow{f} y \rightsquigarrow x \underbrace{\| \mathrm{id}_{f}^{\prime}}_{f} y \\
& \text { coh id2 }(x: *)(y: *)(f: x->y): f->f
\end{aligned}
$$

A problem with CaTT

Writing in CaTT may be very tedious:

$$
\begin{gathered}
x \xrightarrow{f} y \xrightarrow{g} z \quad x \xrightarrow{g \circ f} z \\
\text { coh comp }(x: *)(y: *)(f: x->y) \\
(z: *)(g: y->z): x->z
\end{gathered}
$$

A problem with CaTT

Writing in CaTT may be very tedious :

$$
\begin{aligned}
& x \xrightarrow{f} y \rightsquigarrow x \underbrace{\Downarrow}_{f} y \\
& \text { coh unitl }(\mathrm{x}: *)(\mathrm{y}: *)(\mathrm{f}: \mathrm{x}->\mathrm{y}) \\
& \quad: \operatorname{comp}(\mathrm{id} \mathrm{x}) \mathrm{f} \rightarrow \mathrm{f}
\end{aligned}
$$

A solution: the suspension

Idea: Write only the left term and let the software generate the right one.

coh id (x:*) : $\mathrm{x}->\mathrm{x}$		coh id2 (x:*) (y:*) (f:x->y) :f

Practice: Generate the terms on the fly using the dimension of the argument.

$$
\text { coh id }(\mathrm{x}: *): \mathrm{x}->\mathrm{x}
$$

$$
\text { coh id }(x: *): x->x
$$

$$
\begin{aligned}
& \text { coh id2 }(x: *)(y: *)(f: x->y): f->f \\
& \text { fot }
\end{aligned}
$$

$$
\text { let ex }(x: *)(y: *)(f: x->y)=i d 2 f
$$

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of the type theory.

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of the type theory.

$$
\Sigma \varnothing=\left(x_{0}: \star, y_{0}: \star\right)
$$

$$
\Sigma(\Gamma, x: A)=\Sigma \Gamma, x: \Sigma A
$$

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of the type theory.

$$
\begin{aligned}
\Sigma \varnothing & =\left(x_{0}: \star, y_{0}: \star\right) \\
\Sigma \star & =x_{0} \underset{\star}{\rightarrow} y_{0}
\end{aligned}
$$

$$
\begin{aligned}
\Sigma(\Gamma, x: A) & =\Sigma \Gamma, x: \Sigma A \\
\Sigma(t \rightarrow \vec{A} u) & =\Sigma t \underset{\Sigma A}{\longrightarrow} \Sigma u
\end{aligned}
$$

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of the type theory.

$$
\begin{aligned}
\Sigma \varnothing & =\left(x_{0}: \star, y_{0}: \star\right) \\
\Sigma \star & =x_{0} \underset{\star}{\rightarrow} y_{0} \\
\Sigma x & =x
\end{aligned}
$$

$$
\begin{aligned}
\Sigma(\Gamma, x: A) & =\Sigma \Gamma, x: \Sigma A \\
\Sigma(t \underset{A}{\rightarrow} u) & =\Sigma t \underset{\Sigma A}{\longrightarrow} \Sigma u \\
\Sigma\left(\operatorname{coh}_{\Gamma, A}[\gamma]\right) & =\operatorname{coh}_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma]
\end{aligned}
$$

Definition of the suspension

Induction over the syntax: Define the suspension as a meta-operation on the syntax of the type theory.

$$
\begin{aligned}
\Sigma \varnothing & =\left(x_{0}: \star, y_{0}: \star\right) \\
\Sigma \star & =x_{0} \rightarrow y_{\star} \\
\Sigma x & =x \\
\Sigma(\rangle) & =\left\langle x_{0} \mapsto x_{0}, y_{0} \mapsto y_{0}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma(\Gamma, x: A)=\Sigma \Gamma, x: \Sigma A \\
& \Sigma(t \rightarrow A \\
& \Sigma\left(\operatorname{coh}_{\Gamma, A}[\gamma]\right)=\Sigma t \underset{\Sigma A}{ } \Sigma u \\
& \Sigma(\langle\gamma, x \mapsto t\rangle)=\langle\Sigma \gamma, x \mapsto \Sigma t\rangle
\end{aligned}
$$

Illustration

On contexts:

Γ	$\Sigma \Gamma$
$\stackrel{x}{\bullet}$	$\stackrel{x_{0}}{\bullet} \xrightarrow{x} \stackrel{y_{0}}{\bullet}$
$(x: \star)$	$\left(x_{0}: \star, y_{0}: \star, x: x_{0}^{\rightarrow} y_{0}\right)$

Illustration

On contexts：

Γ	$\Sigma \Gamma$
$\stackrel{x}{(x: \star)}$	$\begin{gathered} \stackrel{x_{0}}{\substack{x}} \stackrel{y_{0}}{\left(x_{0}: \star, y_{0}: \star, x: \underset{\star}{x_{0} \rightarrow y_{0}}\right)} . \end{gathered}$
	$\left(x_{0}: \star, y_{0}: \star, x: x_{0} \rightarrow y_{0}, y: x_{0} \rightarrow y_{0}, f: x \rightarrow y\right)$

Well-definedness of the suspension

$$
\begin{aligned}
\Sigma \varnothing & =\left(x_{0}: *, y_{0}: *\right) & \Sigma(\Gamma, x: A) & =\Sigma \Gamma, x: \Sigma A \\
\Sigma \star & =x_{0} \rightarrow y_{0} & \Sigma(t \rightarrow \vec{A}) & =\Sigma t \underset{\Sigma A}{ } \Sigma u \\
\Sigma x & =x & \Sigma\left(\operatorname{coh}_{\Gamma, A}[\gamma]\right) & =\operatorname{coh}_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma] \\
\Sigma(\rangle) & =\left\langle x_{0} \mapsto x_{0}, y_{0} \mapsto y_{0}\right\rangle & \Sigma(\langle\gamma, x \mapsto t\rangle) & =\langle\Sigma \gamma, x \mapsto \Sigma t\rangle
\end{aligned}
$$

Well-definedness of the suspension

$$
\begin{aligned}
\Sigma \varnothing & =\left(x_{0}: *, y_{0}: *\right) & \Sigma(\Gamma, x: A) & =\Sigma \Gamma, x: \Sigma A \\
\Sigma \star & =x_{0} \rightarrow y_{0} & \Sigma\left(t \rightarrow \frac{A}{}\right) & =\Sigma t \underset{\Sigma A}{\Sigma u} \\
\Sigma x & =x & \Sigma\left(\operatorname{coh}_{\Gamma, A}[\gamma]\right) & =\operatorname{coh}_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma] \\
\Sigma(\rangle) & =\left\langle x_{0} \mapsto x_{0}, y_{0} \mapsto y_{0}\right\rangle & \Sigma(\langle\gamma, x \mapsto t\rangle) & =\langle\Sigma \gamma, x \mapsto \Sigma t\rangle
\end{aligned}
$$

Theorem (B., Mimram)
The following rules are derivable

$$
\frac{\Gamma \vdash}{\Sigma \Gamma \vdash} \quad \frac{\Gamma \vdash A}{\Sigma \Gamma \vdash \Sigma A} \quad \frac{\Gamma \vdash t: A}{\Sigma \Gamma \vdash \Sigma t: \Sigma A} \quad \frac{\Delta \vdash \gamma: \Gamma}{\Sigma \Delta \vdash \Sigma \gamma: \Sigma \Gamma}
$$

Well-definedness of the suspension

$$
\begin{aligned}
\Sigma \varnothing & =\left(x_{0}: *, y_{0}: *\right) & \Sigma(\Gamma, x: A) & =\Sigma \Gamma, x: \Sigma A \\
\Sigma \star & =x_{0} \rightarrow y_{0} & \Sigma\left(t \rightarrow \frac{A}{}\right) & =\Sigma t \underset{\Sigma A}{ } \Sigma u \\
\Sigma x & =x & \Sigma\left(\operatorname{coh}_{\Gamma, A}[\gamma]\right) & =\operatorname{coh}_{\Sigma \Gamma, \Sigma A}[\Sigma \gamma] \\
\Sigma(\rangle) & =\left\langle x_{0} \mapsto x_{0}, y_{0} \mapsto y_{0}\right\rangle & \Sigma(\langle\gamma, x \mapsto t\rangle) & =\langle\Sigma \gamma, x \mapsto \Sigma t\rangle
\end{aligned}
$$

Theorem (B., Mimram)
The following rules are derivable

$$
\frac{\Gamma \vdash}{\Sigma \Gamma \vdash} \quad \frac{\Gamma \vdash A}{\Sigma \Gamma \vdash \Sigma A} \quad \frac{\Gamma \vdash t: A}{\Sigma \Gamma \vdash \Sigma t: \Sigma A} \quad \frac{\Delta \vdash \gamma: \Gamma}{\Sigma \Delta \vdash \Sigma \gamma: \Sigma \Gamma}
$$

Proof.
By induction over the rules of the theory

Example: A development using the suspension

```
coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```


Example: A development using the suspension

```
coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

Internally:

Example: A development using the suspension

```
coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

Internally:
\triangleright The system computes the difference in the dimension of the argument unit expects an argument of dimension 1,a is of dimension $2 \rightsquigarrow$ suspend once

Example: A development using the suspension

```
coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

Internally:
\triangleright The system computes the difference in the dimension of the argument unit expects an argument of dimension 1 ,a is of dimension $2 \rightsquigarrow$ suspend once
\triangleright Compute the suspension of unit

Example: A development using the suspension

```
coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

Internally:
\triangleright The system computes the difference in the dimension of the argument unit expects an argument of dimension 1,a is of dimension $2 \rightsquigarrow$ suspend once
\triangleright Compute the suspension of unit
\triangleright Compute the suspension of comp

Example: A development using the suspension

```
coh id (x:*):x->x
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z
coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f
let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a
```

Internally:
\triangleright The system computes the difference in the dimension of the argument unit expects an argument of dimension 1,a is of dimension $2 \rightsquigarrow$ suspend once
\triangleright Compute the suspension of unit
\triangleright Compute the suspension of comp
\triangleright compute the suspension of id

A categorical view on the suspension

Recall:

\triangleright Information about the derivable syntax is stored in the syntactic category
\triangleright The suspension defined on the syntax respects the derivability

A categorical view on the suspension

Recall:
\triangleright Information about the derivable syntax is stored in the syntactic category
\triangleright The suspension defined on the syntax respects the derivability
\downarrow The suspension lifts on the category syntactic

A categorical view on the suspension

Recall:

\triangleright Information about the derivable syntax is stored in the syntactic category
\triangleright The suspension defined on the syntax respects the derivability
\hookrightarrow The suspension lifts on the category syntactic

$$
\mathcal{S}_{\mathrm{CaTT}} \xrightarrow{\Sigma()} \mathcal{S}_{\mathrm{CaTT}}
$$

$\Sigma()$ is a morphism of CwF

A categorical view on the suspension

Recall:

\triangleright Information about the derivable syntax is stored in the syntactic category
\triangleright The suspension defined on the syntax respects the derivability
\llcorner The suspension lifts on the category syntactic

$$
\mathcal{S}_{\mathrm{CaTT}} \xrightarrow{\Sigma()} \mathcal{S}_{\mathrm{CaTT}}
$$

$$
\Sigma() \text { is a morphism of } \mathrm{CwF}
$$

See the semantics

Another example: The functorialization

The functorialization is another meta-operation on the syntax

Another example: The functorialization

The functorialization is another meta-operation on the syntax

It translates another property of the theory of weak ω-categories The operations in a higher category define functors

Another example: The functorialization

The functorialization is another meta-operation on the syntax
It translates another property of the theory of weak ω-categories The operations in a higher category define functors

Problem: This operation is not always well-defined. It only defines a partial endomorphism of CwFs

Semantics

The Grothendieck-Maltsiniotis definition of ω-categories

\triangleright Define the category Θ_{0} of pasting schemes Characterized as colimits: globular sums
\triangleright Complete it into the category Θ_{∞} Add lift conditions, while preserving globular sums. The extension $\Theta_{0} \hookrightarrow \Theta_{\infty}$ defined by universal property
\triangleright The weak ω-categories are functors $\Theta_{\infty} \rightarrow$ Set which preserve the globular sums

A categorical view of ps－contexts

Define the full subcategory $\mathcal{S}_{\text {PS }} \hookrightarrow \mathcal{S}_{\text {CaTT }}$ ：
\triangleright objects＝ps－contexts

A categorical view of ps-contexts

Define the full subcategory $\mathcal{S}_{\text {PS }} \hookrightarrow \mathcal{S}_{\text {CaTT }}$:
\triangleright objects=ps-contexts

Theorem (Finster, Mimram)
There is an equivalence of categories $\Theta_{0}^{\mathrm{op}} \simeq \mathcal{S}_{\mathrm{PS}, 0}$

A categorical view of ps-contexts

Define the full subcategory $\mathcal{S}_{\mathrm{PS}} \hookrightarrow \mathcal{S}_{\text {CaTT }}$:
\triangleright objects=ps-contexts

Theorem (Finster, Mimram)
There is an equivalence of categories $\Theta_{0}^{\mathrm{op}} \simeq \mathcal{S}_{\mathrm{PS}, 0}$

Note: $\mathcal{S}_{\mathrm{PS}, 0}$ is the category $\mathcal{S}_{\mathrm{PS}}$ removing all non-variable terms

Ps-contexts with coherences

Theorem (B., Finster, Mimram)
There is an equivalence of categories $\Theta_{\infty}^{o p} \simeq \mathcal{S}_{\mathrm{PS}}$

Proof.
\triangleright The inclusion $\mathcal{S}_{\mathrm{PS}, 0} \rightarrow \mathcal{S}_{\mathrm{PS}}$ preserves the globular products
\triangleright The inclusion $\mathcal{S}_{\text {PS }, 0} \rightarrow \mathcal{S}_{\text {PS }}$ satisfies the universal property dual of the inclusion $\Theta_{0} \rightarrow \Theta_{\infty}$

The syntactic category $\mathcal{S}_{\text {CaTT }}$

Theorem (B., Finster, Mimram)
The inclusion functor $\mathcal{S}_{\mathrm{PS}} \hookrightarrow \mathcal{S}_{\mathrm{CaTT}}$ is codense

The syntactic category $\mathcal{S}_{\text {CaTT }}$

Theorem (B., Finster, Mimram)
The inclusion functor $\mathcal{S}_{\mathrm{PS}} \hookrightarrow \mathcal{S}_{\mathrm{CaTT}}$ is codense

The syntactic category $\mathcal{S}_{\text {CaTT }}$

Theorem (B., Finster, Mimram)
The inclusion functor $\mathcal{S}_{\mathrm{PS}} \hookrightarrow \mathcal{S}_{\mathrm{CaTT}}$ is codense
Every context is canonically a limit of ps-contexts

A universal property of the extension

Corollary
The inclusion functor $\mathcal{S}_{\mathrm{PS}} \hookrightarrow \mathcal{S}_{\mathrm{CaTT}}$ induces an equivalence of categories $\left[\mathcal{S}_{\mathrm{CaTT}}, \text { Set }\right]_{\text {canonical limits }} \simeq\left[\mathcal{S}_{\mathrm{PS}}, \text { Set }\right]_{\text {globular products }}$

The models of CaTT

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the weak ω-categories

The models of CaTT

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the weak ω-categories Proof.

The models of CaTT

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the weak ω-categories Proof.

$$
\begin{aligned}
{\left[\mathcal{S}_{\mathrm{CaTT}}, \text { Set }\right]_{\mathrm{CWF}} } & \simeq\left[\mathcal{S}_{\mathrm{CaTT}}, \text { Set }\right]_{\text {canonical limits }} \\
& \simeq\left[\mathcal{S}_{\mathrm{PS}}, \text { Set }\right]_{\text {globular products }}
\end{aligned}
$$

The models of CaTT

Theorem (B., Finster, Mimram)
The models of CaTT are equivalent to the weak ω-categories Proof.

$$
\begin{aligned}
{\left[\mathcal{S}_{\mathrm{CaTT}}, \text { Set }\right]_{\mathrm{CWF}} } & \simeq\left[\mathcal{S}_{\mathrm{CaTT}}, \text { Set }\right]_{\text {canonical limits }} \\
& \simeq\left[\mathcal{S}_{\mathrm{PS}}, \text { Set }\right]_{\text {globular products }} \\
& \simeq\left[\Theta_{\infty}^{\text {op }}, \text { Set }\right]_{\text {globular sums }}
\end{aligned}
$$

Thank you！

