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Motivations: A bit of category theory

Categories are made of

objects arrows

• • •

Equipped with

identities compositions

x  x x
idx x y zf g

 x z
g◦f

Satisfying

unitality associativity

f ◦ idx = f = idy ◦f h ◦ (g ◦ f ) = (h ◦ g) ◦ f
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A few example of categories

. The category of sets: objects = sets, morphisms = functions

. The category of groups: objects = groups, morphisms = group homomorphisms

. The category of vector spaces: objects = vector spaces, morphisms = linear maps

. The category of metro itineraries: objects = metro stations, morphisms = metro
itineraries

. The syntactic category of a type theory : objects = contexts, morphisms =
substitutions

. Every monoid M is a category : objects = {•}, morphisms = M.
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Motivations: Why categories?

Categories are ubiquitous, they are notably useful for:

. Modeling functional programming (objects = types, morphisms = λ-terms)

. Encoding propositions and implications

. De�ning algebraic structures

. And many other things...

Provide a common framework to study programming languages, logic and algebra�

Semantics
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The usefulness of categories for semantics

. One can encode the syntax together with derivability using categories
The syntactic category: objects = contexts, morphisms = substitutions

. How to encode the type and terms of the theory?
Use an elaborate categorical construction: Categories with families (CwF)

. The syntactic category of the theory is a CwF
Encodes all the rules into a categorical device, comes with a notion of morphism

. Models of the theory : morphisms of CwF from the syntactic category to sets
Interprets the rules of the theory as axioms of an algebraic theory

Theorem
The models of the type-theoretic formulation of categories are the categories.
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x y z : A,
x = y → y = z → x = z

trans A x x x refl refl := refl

But: The composition is not associative

(p ∗ q) ∗ r 6= p ∗ (q ∗ r)
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Motivations: When categories are insu�cient
Some situation that ought to be categories

. paths in topological spaces
. Identity types in Martin-Löf type
theory

•x

•y

p

•z

q

trans:
∏

A : U ,
∏

x y z : A,
x = y → y = z → x = z

trans A x x x refl refl := refl

The composition is associative up to homo-
topy

(p ∗ q) ∗ r ⇒ p ∗ (q ∗ r)

There is a proof term for associativity
assoc:

∏
A : U ,

∏
x y z w : A,∏

p : x = y ,
∏

q : y = z ,
∏

r : z = w ,
trans(trans p q) r = trans p (trans q r)



Higher categories

We can encode this defect into cells of higher dimension



Weak ω-categories



Globular sets
Weak ω-categories = globular sets + compositions
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With compositions
We require that these cells compose

. Arrows:
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Everything is weak!

All the above-mentioned equalities are weak: they are equivalences
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Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully
composed

They are well-ordered and do not have any hole
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The Grothendieck-Maltsiniotis de�nition [?]

. Existence of compositions:
Every pasting scheme can be composed

. Generalized �Associativities�:
Any two ways of composing a same pasting scheme are related by a higher cell

Formally:
These axioms are encoded in a category Θ∞ de�ned by a universal property of formally
adding lifts for well-chosen pairs of morphisms.

The weak ω-categories are the presheaves over Θ∞ that preserve a class of colimits.
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The type theory CaTT
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Types for cells

In order to manipulate ω-categories, we need:

. a type ? for objects:
Γ `

Γ ` ?
. a type → for all ≥ 1-cells

Γ ` t : A Γ ` u : A

Γ ` t−→
A
u



Contexts are diagrams!

Γ
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PS-contexts

. The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment Γ `ps

. This judgment is decidable with an algorithm
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A
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Source and target
Every ps-context Γ has a source ∂−(Γ) and a target ∂+(Γ) (which are ps-contexts
themselves)
Intuitively, composing fully the ps-context yields a cell from its source to its target
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Interpretation

. A term Γ ` t : A corresponds to a composition of certain cells of Γ.
More precisely: a cell in the weak ω-catégory freely generated by the globular set

corresponding to Γ.

. Case of ps-contexts Γ `ps:

Γ ` t : A
Var(t : A) = Var(Γ)

}
t is a way of composing completely the ps-

context Γ.
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Operations and coherences

. Existence of compositions:
Every pasting scheme can be composed

. general "Associativities": Any two ways of composing the same pasting scheme

are related by a higher cell

Rule for generating these associativities:
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A
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Γ ` assoc : comp f (comp g h)→comp (comp f g) h
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Encoding the theory

Recall the syntactic category: SCaTT
. objects = contexts of the theory CaTT

. morphisms = substitutions of the theory

This category carries a structure of CwF



Suspension in CaTT



A problem with CaTT

Writing in CaTT may be very tedious :

x  x x
idx x y x yf  

f

f

⇓ idf

coh id (x:*):x->x coh id2 (x:*)(y:*)(f:x->y):f->f
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Writing in CaTT may be very tedious :

x y z x zf g
 

g◦f
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f

h

⇓α∗β

coh comp (x:*)(y:*)(f:x->y)

(z:*)(g:y->z):x->z

coh vcomp (x:*)(y:*)(f:x->y)(g:x->y)

(a:f->g)(h:x->y)(b:g->h):f->h



A problem with CaTT

Writing in CaTT may be very tedious :

x y x yf  
f ◦idx

f

⇓ x y x y

f

g

⇓α  

f

h

idf ∗α ⇓V⇓ α

coh unitl (x:*)(y:*)(f:x->y)

:comp (id x) f -> f

coh unitl2 (x:*)(y:*)(f:x->y)(g:x->y)

(a:f->g):vcomp (id f) a -> a



A solution: the suspension

Idea: Write only the left term and let the software generate the right one.

coh id (x:*):x->x
suspension
 coh id2 (x:*)(y:*)(f:x->y):f->f

Practice: Generate the terms on the �y using the dimension of the argument.

coh id (x:*):x->x

let ex (x:*)(y:*)(f:x->y)=id f
 

coh id (x:*):x->x

coh id2 (x:*)(y:*)(f:x->y):f->f

let ex (x:*)(y:*)(f:x->y)=id2 f



De�nition of the suspension

Induction over the syntax: De�ne the suspension as a meta-operation on the syntax of
the type theory.

Σ∅ = (x0 : ?, y0 : ?) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0−→
?
y0 Σ(t−→

A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉
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Well-de�nedness of the suspension

Σ∅ = (x0 : ∗, y0 : ∗) Σ(Γ, x : A) = ΣΓ, x : ΣA

Σ? = x0→y0 Σ(t−→
A
u) = Σt−−→

ΣA
Σu

Σx = x Σ(cohΓ,A[γ]) = cohΣΓ,ΣA[Σγ]

Σ(〈〉) = 〈x0 7→ x0, y0 7→ y0〉 Σ(〈γ, x 7→ t〉) = 〈Σγ, x 7→ Σt〉

Theorem (B., Mimram)

The following rules are derivable

Γ `
ΣΓ `

Γ ` A

ΣΓ ` ΣA

Γ ` t : A

ΣΓ ` Σt : ΣA

∆ ` γ : Γ

Σ∆ ` Σγ : ΣΓ

Proof.
By induction over the rules of the theory
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Example: A development using the suspension

coh id (x:*):x->x

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

coh unit (x:*)(y:*)(f:x->y):comp (id x) f -> f

let unit2 (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)=unit a

Internally:

. The system computes the di�erence in the dimension of the argument
unit expects an argument of dimension 1,a is of dimension 2  suspend once

. Compute the suspension of unit

. Compute the suspension of comp

. compute the suspension of id
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A categorical view on the suspension

Recall:

. Information about the derivable syntax is stored in the syntactic category

. The suspension de�ned on the syntax respects the derivability

�

The suspension lifts on the category syntactic

SCaTT SCaTT
Σ()

Σ() is a morphism of CwF

See the semantics
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Another example: The functorialization

The functorialization is another meta-operation on the syntax

It translates another property of the theory of weak ω-categories
The operations in a higher category de�ne functors

Problem: This operation is not always well-de�ned. It only de�nes a partial
endomorphism of CwFs
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Semantics



The Grothendieck-Maltsiniotis de�nition of ω-categories

. De�ne the category Θ0 of pasting schemes
Characterized as colimits: globular sums

. Complete it into the category Θ∞
Add lift conditions, while preserving globular sums. The extension Θ0 ↪→ Θ∞
de�ned by universal property

. The weak ω-categories are functors Θ∞ → Set which preserve the globular sums



A categorical view of ps-contexts

De�ne the full subcategory SPS ↪→ SCaTT:
. objects=ps-contexts

Theorem (Finster, Mimram)

There is an equivalence of categories Θop
0 ' SPS,0

Note: SPS,0 is the category SPS removing all non-variable terms
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Ps-contexts with coherences

Theorem (B., Finster, Mimram)

There is an equivalence of categories Θop
∞ ' SPS

Proof.

. The inclusion SPS,0 → SPS preserves the globular products

. The inclusion SPS,0 → SPS satis�es the universal property dual of the inclusion
Θ0 → Θ∞



The syntactic category SCaTT

Theorem (B., Finster, Mimram)

The inclusion functor SPS ↪→ SCaTT is codense

Every context is canonically a limit of ps-contexts
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The syntactic category SCaTT

Theorem (B., Finster, Mimram)

The inclusion functor SPS ↪→ SCaTT is codense

Every context is canonically a limit of ps-contexts



A universal property of the extension

Corollary

The inclusion functor SPS ↪→ SCaTT induces an equivalence of categories

[SCaTT, Set]canonical limits ' [SPS, Set]globular products

SCaTT Set

SPS

canonical limits

∃!
globular products



The models of CaTT

Theorem (B., Finster, Mimram)

The models of CaTT are equivalent to the weak ω-categories

Proof.

[SCaTT, Set]CwF ' [SCaTT, Set]canonical limits

' [SPS, Set]globular products
' [Θop

∞, Set]globular sums
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Thank you!
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