CaTT: A type theoretic approach to weak ω -categories

Thibaut Benjamin, Eric Finster, Samuel Mimram

12 February 2021

Seminaire polygraphes, categories superieures

Introduction

<ロト <回 > < 三 > < 三 > < 三 > の < ○</p>

Categories are made of

Categories are made of

objects

•

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

Categories are made of

Categories are made of

Equipped with

Categories are made of

Equipped with

identities

$$x \rightsquigarrow x \xrightarrow{\operatorname{id}_x} x$$

Categories are made of

Equipped with

identities

 $x \rightsquigarrow x \xrightarrow{id_x} x$

compositions $x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$

Satisfying

Satisfying

 $unitality f \circ id_x = f = id_y \circ f$

 $f \circ \operatorname{id}_x = f = \operatorname{id}_y \circ f$

associativity $h \circ (g \circ f) = (h \circ g) \circ f$

▷ The category of sets: objects = sets, morphisms = functions

- ▷ The category of sets: objects = sets, morphisms = functions
- ▷ The category of groups: objects = groups, morphisms = group homomorphisms

- ▷ The category of sets: objects = sets, morphisms = functions
- ▷ The category of groups: objects = groups, morphisms = group homomorphisms
- \triangleright The category of vector spaces: objects = vector spaces, morphisms = linear maps

- ▷ The category of sets: objects = sets, morphisms = functions
- ▷ The category of groups: objects = groups, morphisms = group homomorphisms
- \triangleright The category of vector spaces: objects = vector spaces, morphisms = linear maps
- The category of metro itineraries: objects = metro stations, morphisms = metro itineraries

- ▷ The category of sets: objects = sets, morphisms = functions
- ▷ The category of groups: objects = groups, morphisms = group homomorphisms
- \triangleright The category of vector spaces: objects = vector spaces, morphisms = linear maps
- The category of metro itineraries: objects = metro stations, morphisms = metro itineraries
- The syntactic category of a type theory : objects = contexts, morphisms = substitutions

- ▷ The category of sets: objects = sets, morphisms = functions
- ▷ The category of groups: objects = groups, morphisms = group homomorphisms
- \triangleright The category of vector spaces: objects = vector spaces, morphisms = linear maps
- The category of metro itineraries: objects = metro stations, morphisms = metro itineraries
- The syntactic category of a type theory : objects = contexts, morphisms = substitutions
- ▷ Every monoid *M* is a category : objects = $\{\bullet\}$, morphisms = *M*.

Categories are ubiquitous, they are notably useful for:

 \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)

- \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)
- Encoding propositions and implications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへで

- \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)
- Encoding propositions and implications
- Defining algebraic structures

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)
- Encoding propositions and implications
- Defining algebraic structures
- ▷ And many other things...

Categories are ubiquitous, they are notably useful for:

- \triangleright Modeling functional programming (objects = types, morphisms = λ -terms)
- Encoding propositions and implications
- Defining algebraic structures
- And many other things...

Provide a common framework to study programming languages, logic and algebra ${\bf l}_{\rm r}$ Semantics

Foreshadowing: Type theoretic formulation of categories Categories are made of objects arrows • $\bullet \longrightarrow \bullet$ Equipped with identities compositions $x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$ $x \rightsquigarrow x \xrightarrow{id_x} x$

Satisfying **unitality** $f \circ id_x = f = id_y \circ f$

associativity $h \circ (g \circ f) = (h \circ g) \circ f$

Foreshadowing: Type theoretic formulation of categories Categories are made of objects arrows $\bullet \longrightarrow \bullet$ Γ⊢ <u>Γ⊢ *</u> Equipped with identities compositions $x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$ $x \rightsquigarrow x \xrightarrow{id_x} x$ Satisfying unitality associativity $f \circ \operatorname{id}_x = f = \operatorname{id}_v \circ f$ $h \circ (g \circ f) = (h \circ g) \circ f$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

Foreshadowing: Type theoretic formulation of categories Categories are made of objects arrows $\frac{\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star}{\Gamma \vdash x \rightarrow y}$ Г⊢ <u>Γ⊢ *</u> Equipped with identities compositions $x \rightsquigarrow x \xrightarrow{id_x} x$ $x \xrightarrow{f} v \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$ Satisfying unitality associativity

 $h \circ (g \circ f) = (h \circ g) \circ f$

 $f \circ \operatorname{id}_x = f = \operatorname{id}_y \circ f$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < < つ < < </p>

Foreshadowing: Type theoretic formulation of categories Categories are made of objects arrows $\frac{\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star}{\Gamma \vdash x \rightarrow y}$ <u>Γ⊢ *</u> Equipped with identities compositions $x \xrightarrow{f} y \xrightarrow{g} z \rightsquigarrow x \xrightarrow{g \circ f} z$ $\Gamma \vdash x : \star$ $\Gamma \vdash id(x) : x \rightarrow x$ Satisfying unitality

 $f \circ \operatorname{id}_X = f = \operatorname{id}_Y \circ f$

associativity $h \circ (g \circ f) = (h \circ g) \circ f$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

Foreshadowing: Type theoretic formulation of categoriesCategories are made of
objectsarrows $\Gamma \vdash$
 $\Gamma \vdash \star$ $\Gamma \vdash x : \star$
 $\Gamma \vdash x \rightarrow y$ Equipped withEquipped here
 $\Gamma \vdash x \rightarrow y$

 $\frac{\mathsf{identities}}{\Gamma \vdash x : \star}$

 $\frac{\mathsf{compositions}}{\Gamma \vdash f : x \rightarrow y \qquad \Gamma \vdash g : y \rightarrow z}{\Gamma \vdash g \circ f : x \rightarrow z}$

Satisfying **unitality** $f \circ id_x = f = id_y \circ f$

associativity $h \circ (g \circ f) = (h \circ g) \circ f$

Foreshadowing: Type theoretic formulation of categories Categories are made of objects arrows $\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star$ $\Gamma \vdash x \rightarrow v$ **Γ**⊢ ★ Equipped with identities compositions $\Gamma \vdash f : x \rightarrow y \qquad \Gamma \vdash g : y \rightarrow z$ $\Gamma \vdash x : \star$ $\Gamma \vdash id(x) : x \rightarrow x$ $\Gamma \vdash g \circ f : x \rightarrow z$

Satisfying unitality $\frac{\Gamma \vdash f : x \rightarrow y}{\Gamma \vdash f \circ id(x) \equiv f \equiv id(y) \circ f}$

associativity $h \circ (g \circ f) = (h \circ g) \circ f$

Foreshadowing: Type theoretic formulation of categories Categories are made of objects arrows $\Gamma \vdash x : \star \qquad \Gamma \vdash y : \star$ $\Gamma \vdash$ $\Gamma \vdash x \rightarrow v$ $\Gamma \vdash \star$ Equipped with identities compositions $\Gamma \vdash f : x \rightarrow y \qquad \Gamma \vdash g : y \rightarrow z$ $\Gamma \vdash x : \star$ $\Gamma \vdash id(x) : x \rightarrow x$ $\Gamma \vdash g \circ f : x \rightarrow z$ Satisfying

unitality $\Gamma \vdash f \circ \mathsf{id}(x) \equiv f \equiv \mathsf{id}(v) \circ f$

associativity $\Gamma \vdash f : x \rightarrow y$ $\Gamma \vdash f : x \rightarrow y$ $\Gamma \vdash g : y \rightarrow z$ $\Gamma \vdash h : z \rightarrow w$ $\Gamma \vdash h \circ (g \circ f) \equiv (h \circ g) \circ f$ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

One can encode the syntax together with derivability using categories The syntactic category: objects = contexts, morphisms = substitutions

- One can encode the syntax together with derivability using categories The syntactic category: objects = contexts, morphisms = substitutions
- How to encode the type and terms of the theory?
 Use an elaborate categorical construction: Categories with families (CwF)

- One can encode the syntax together with derivability using categories The syntactic category: objects = contexts, morphisms = substitutions
- How to encode the type and terms of the theory?
 Use an elaborate categorical construction: Categories with families (CwF)
- The syntactic category of the theory is a CwF Encodes all the rules into a categorical device, comes with a notion of morphism

- One can encode the syntax together with derivability using categories The syntactic category: objects = contexts, morphisms = substitutions
- How to encode the type and terms of the theory?
 Use an elaborate categorical construction: Categories with families (CwF)
- The syntactic category of the theory is a CwF Encodes all the rules into a categorical device, comes with a notion of morphism
- ▷ Models of the theory : morphisms of CwF from the syntactic category to sets Interprets the rules of the theory as axioms of an algebraic theory
The usefulness of categories for semantics

- One can encode the syntax together with derivability using categories The syntactic category: objects = contexts, morphisms = substitutions
- How to encode the type and terms of the theory?
 Use an elaborate categorical construction: Categories with families (CwF)
- The syntactic category of the theory is a CwF Encodes all the rules into a categorical device, comes with a notion of morphism
- ▷ Models of the theory : morphisms of CwF from the syntactic category to sets Interprets the rules of the theory as axioms of an algebraic theory

Theorem

The models of the type-theoretic formulation of categories are the categories.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Some situation that ought to be categories

▷ paths in topological spaces

But: The composition is not associative

$$(p*q)*r \neq p*(q*r)$$

Some situation that ought to be categories

▷ paths in topological spaces

The composition is associative up to homotopy

$$(p*q)*r \Rightarrow p*(q*r)$$

Some situation that ought to be categories

▷ paths in topological spaces

Identity types in Martin-Löf type theory

trans:
$$\prod A : U$$
, $\prod x \ y \ z : A$,
 $x = y \rightarrow y = z \rightarrow x = z$
trans $A \times x \times refl refl := refl$

The composition is associative up to homotopy

$$(p*q)*r \Rightarrow p*(q*r)$$

But: Transitivity is not associative

 $\texttt{trans}(\texttt{trans} \ p \ q) \ r \not\equiv \texttt{trans} \ p \ (\texttt{trans} \ q \ r)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Some situation that ought to be categories

▶ paths in topological spaces

Identity types in Martin-Löf type theory

$$\begin{array}{l} \texttt{trans:} & \prod A:\mathcal{U}, \ \prod x \ y \ z:A, \\ & x=y \rightarrow y=z \rightarrow x=z \\ \texttt{trans} & A \ x \ x \ \texttt{refl refl := refl} \end{array}$$

The composition is associative up to homotopy

$$(p*q)*r \Rightarrow p*(q*r)$$

There is a proof term for associativity assoc: $\prod A : U$, $\prod x y z w : A$, $\prod p : x = y$, $\prod q : y = z$, $\prod r : z = w$, trans(trans p q) r = trans p (trans q r)

Higher categories

We can encode this defect into cells of higher dimension

Weak ω -categories

(ロ) (型) (E) (E) (E) (O)

Weak ω -categories = globular sets + compositions

A globular set is composed of

▷ points (or objects) : ●

- ▷ points (or objects) : ●
- \triangleright arrows (or 1-cells) : \longrightarrow •

- ▷ points (or objects) : ●
- \triangleright arrows (or 1-cells) : \longrightarrow •
- ▷ 2-cells : \bigcirc •

- ▷ points (or objects) : ●
- \triangleright arrows (or 1-cells) : \longrightarrow •
- \triangleright 2-cells : \checkmark •
- $\triangleright \ 3\text{-cells}: \quad \bullet \quad \Downarrow \Rightarrow \Downarrow \stackrel{\checkmark}{\rightarrow} \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- ▷ points (or objects) : ●
- \triangleright arrows (or 1-cells) : \longrightarrow •
- \triangleright 2-cells : \bigcirc •
- $\triangleright \ 3\text{-cells}: \quad \bullet \quad \Downarrow \Rightarrow \Downarrow \\ \bullet \quad \bullet$
- ⊳ etc

We require that these cells compose

We require that these cells compose

▷ Arrows:

We require that these cells compose

▷ Arrows:

We require that these cells compose

▷ Arrows:

 $\stackrel{\times}{\bullet} \xrightarrow{f} \stackrel{y}{\bullet} \xrightarrow{g} \stackrel{z}{\bullet} \xrightarrow{z} \xrightarrow{z} \xrightarrow{z} \stackrel{z}{\bullet} \xrightarrow{z} \stackrel{z}{\bullet} \xrightarrow{z} \xrightarrow{g \circ f} \stackrel{z}{\bullet} \xrightarrow{z} \xrightarrow{g \circ f} \xrightarrow{g \circ$

▷ 2-cells:

Vertical composition f $\downarrow \alpha$ $\downarrow \alpha$ $\downarrow \beta$ $\downarrow \beta$

We require that these cells compose

▷ Arrows:

$$\overset{\times}{\bullet} \xrightarrow{f} \overset{y}{\bullet} \xrightarrow{g} \overset{g}{\longrightarrow} \overset{z}{\bullet} \xrightarrow{} \xrightarrow{} \overset{\times}{\bullet} \xrightarrow{g \circ f} \overset{z}{\bullet}$$

▷ 2-cells:

Vertical composition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We require that these cells compose

▷ Arrows:

$$\overset{\times}{\bullet} \xrightarrow{f} \overset{y}{\bullet} \xrightarrow{g} \overset{g}{\longrightarrow} \overset{z}{\bullet} \xrightarrow{} \xrightarrow{} \overset{\times}{\bullet} \xrightarrow{g \circ f} \overset{z}{\bullet}$$

▷ 2-cells:

We require that these cells compose

▷ Arrows:

$$\overset{\times}{\bullet} \xrightarrow{f} \overset{y}{\bullet} \xrightarrow{g} \overset{g}{\longrightarrow} \overset{z}{\bullet} \xrightarrow{} \xrightarrow{} \overset{\times}{\bullet} \xrightarrow{g \circ f} \overset{z}{\bullet}$$

▷ 2-cells:

We require that these cells compose

▷ Arrows:

$$\overset{\times}{\bullet} \xrightarrow{f} \overset{y}{\bullet} \xrightarrow{g} \overset{g}{\longrightarrow} \overset{z}{\bullet} \xrightarrow{} \xrightarrow{} \overset{\times}{\bullet} \xrightarrow{g \circ f} \overset{z}{\bullet}$$

▷ 2-cells:

The compositions are required to be associative

The compositions are required to be associative

▷ Arrows:

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

The compositions are required to be associative

▷ Arrows:

The compositions are required to be associative

▷ Arrows:

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

▷ 2-cells:

Vertical composition

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

Horizontal composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

Horizontal composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

Horizontal composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

Horizontal composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

Horizontal composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

The compositions are required to be associative

- ▷ Arrows:
- ▷ 2-cells:

Vertical composition

Horizontal composition

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

Everything is weak!

All the above-mentioned equalities are weak: they are equivalences
Everything is weak!

All the above-mentioned equalities are weak: they are equivalences

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully composed

They are well-ordered and do not have any hole

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully composed

They are well-ordered and do not have any hole

Pasting schemes

The pasting schemes are the globular set that have one unambiguous way of being fully composed

Existence of compositions:
 Every pasting scheme can be composed

- Existence of compositions:
 Every pasting scheme can be composed
- Generalized "Associativities":

Any two ways of composing a same pasting scheme are related by a higher cell

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Existence of compositions:
 Every pasting scheme can be composed
- ▷ Generalized "Associativities":

Any two ways of composing a same pasting scheme are related by a higher cell

Formally:

These axioms are encoded in a category Θ_{∞} defined by a universal property of formally adding lifts for well-chosen pairs of morphisms.

- Existence of compositions:
 Every pasting scheme can be composed
- ▷ Generalized "Associativities":

Any two ways of composing a same pasting scheme are related by a higher cell

Formally:

These axioms are encoded in a category Θ_{∞} defined by a universal property of formally adding lifts for well-chosen pairs of morphisms.

The weak ω -categories are the presheaves over Θ_{∞} that preserve a class of colimits.

The type theory CaTT

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z): x->z

```
coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z): x->z
```

Keyword: declaration of an operation

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□ > ◆□ > ◆三 > ◆三 > → □ > ◆○ >

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z): x->z

$$\overset{X}{\bullet} \xrightarrow{f} \overset{Y}{\bullet} \xrightarrow{g} \overset{Z}{\longrightarrow} \overset{Z}{\bullet} \qquad \stackrel{X}{\bullet} \xrightarrow{comp \ f \ g} \overset{Z}{\longrightarrow} \overset{Z}{\longrightarrow}$$

Composition of two arrows

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z): x->z

$$\overset{X}{\bullet} \xrightarrow{f} \overset{Y}{\bullet} \xrightarrow{g} \overset{Z}{\bullet} \xrightarrow{\chi} \overset{X}{\bullet} \xrightarrow{\text{comp f g}} \overset{Z}{\bullet}$$

Composition of two arrows

coh id (x:*) : x -> x

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z): x->z

$$\overset{X}{\bullet} \xrightarrow{f} \overset{Y}{\bullet} \overset{g}{\longrightarrow} \overset{Z}{\bullet} \xrightarrow{} \overset{X}{\bullet} \xrightarrow{} \underset{g}{\overset{comp}{\bullet}} \overset{f}{g} \overset{Z}{\xrightarrow{}} \overset{Z}{\xrightarrow{}} \overset{Comp}{\xrightarrow{}} \overset{f}{g} \overset{Z}{\xrightarrow{}} \overset{Z}{$$

Composition of two arrows

coh id (x:*) : x->x

Identity of an object

In order to manipulate ω -categories, we need:

In order to manipulate ω -categories, we need:

 \triangleright a type \star for objects:

$\frac{\Gamma \vdash}{\Gamma \vdash \star}$

In order to manipulate ω -categories, we need:

▷ a type ★ for objects:

 \triangleright a type \rightarrow for arrows:

 $\frac{\Gamma \vdash}{\Gamma \vdash \star}$ $\frac{\Gamma \vdash t : \star \quad \Gamma \vdash u : \star}{\Gamma \vdash t \to u}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

In order to manipulate ω -categories, we need:

▷ a type ★ for objects:

$$\begin{array}{c} \vdash & \Gamma \vdash \\ \hline & \Gamma \vdash \star \end{array} \\ \triangleright \text{ a type} \rightarrow \text{ for arrows:} \\ \hline & \Gamma \vdash t : \star \quad \Gamma \vdash u : \star \\ \hline & \Gamma \vdash t \to u \end{array} \\ \hline & \Gamma \vdash f : t \to u \quad \Gamma \vdash g : t \to u \\ \hline & \Gamma \vdash f \Rightarrow g \end{array}$$

In order to manipulate ω -categories, we need:

▷ a type ★ for objects:

⊳ etc

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

In order to manipulate ω -categories, we need:

 \triangleright a type \star for objects:

$$\triangleright \text{ a type} \rightarrow \text{ for all } \geq 1\text{-cells} \qquad \qquad \frac{\Gamma \vdash}{\Gamma \vdash \star} \\ \frac{\Gamma \vdash t : A \qquad \Gamma \vdash u : A}{\Gamma \vdash t \rightarrow u}$$

Contexts are diagrams!

$$\left\{ \begin{array}{cccc} x:\star, & y:\star, & z:\star, & t:\star \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$$

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

Contexts are diagrams!

$$\Gamma \left\{ \begin{array}{cccc}
x : \star, & y : \star, & z : \star, & t : \star \\
f_1 : x \xrightarrow{} y, & f_2 : x \xrightarrow{} y, & g : x \xrightarrow{} z, & h : z \xrightarrow{} t, & k : t \xrightarrow{} x \\
\end{array} \right.$$

Contexts are diagrams!

$$\Gamma \begin{cases}
x : \star, & y : \star, & z : \star, & t : \star \\
f_1 : x \xrightarrow{} y, & f_2 : x \xrightarrow{} y, & g : x \xrightarrow{} z, & h : z \xrightarrow{} t, & k : t \xrightarrow{} x \\
\alpha : f_1 \xrightarrow{} y & f_2 \\
x \xrightarrow{} y & x & x
\end{cases}$$

PS-contexts

> The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment $\Gamma \vdash_{ps}$

PS-contexts

> The ps-contexts are the contexts corresponding to pasting schemes.

They are recognized by a judgment $\Gamma \vdash_{ps}$

> This judgment is decidable with an algorithm

 $\frac{\Gamma \vdash_{ps} x : A}{\prod_{j \in ps} f : x \xrightarrow{j} y}$ $\frac{\Gamma \vdash_{ps} f : x \xrightarrow{j} y}{\Gamma \vdash_{ps} y : A}$ $\frac{\Gamma \vdash_{ps} x : x}{\Gamma \vdash_{ps} x}$

Every ps-context Γ has a source $\partial^{-}(\Gamma)$ and a target $\partial^{+}(\Gamma)$ (which are ps-contexts themselves)

Intuitively, composing fully the ps-context yields a cell from its source to its target

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣��

Every ps-context Γ has a source $\partial^{-}(\Gamma)$ and a target $\partial^{+}(\Gamma)$ (which are ps-contexts themselves)

Intuitively, composing fully the ps-context yields a cell from its source to its target

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Every ps-context Γ has a source $\partial^{-}(\Gamma)$ and a target $\partial^{+}(\Gamma)$ (which are ps-contexts themselves)

Intuitively, composing fully the ps-context yields a cell from its source to its target

Every ps-context Γ has a source $\partial^{-}(\Gamma)$ and a target $\partial^{+}(\Gamma)$ (which are ps-contexts themselves)

Intuitively, composing fully the ps-context yields a cell from its source to its target

Example

Interpretation

▷ A term $\Gamma \vdash t$: A corresponds to a composition of certain cells of Γ . More precisely: a cell in the weak ω -catégory freely generated by the globular set corresponding to Γ .

Interpretation

▷ A term Γ ⊢ t : A corresponds to a composition of certain cells of Γ. More precisely: a cell in the weak ω-catégory freely generated by the globular set corresponding to Γ.

▷ Case of ps-contexts $\Gamma \vdash_{ps}$:

 $\begin{array}{c} \Gamma \vdash t : A \\ \mathsf{Var}(t : A) = \mathsf{Var}(\Gamma) \end{array} \right\} \qquad t \text{ is a way of composing completely the ps-context } \Gamma. \end{array}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ 日 ・ 今々ぐ

Operations and coherences

▷ Existence of compositions:

Every pasting scheme can be composed

Operations and coherences

Existence of compositions:

Every pasting scheme can be composed

Rule for generating these compositions:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \partial^{-}(\Gamma) \vdash t : A \quad \partial^{+}(\Gamma) \vdash u : A}{\Gamma \vdash \mathsf{op}_{\Gamma, t \xrightarrow{A} u} : t \xrightarrow{A} u}$$

 $Var(t : A) = Var(\partial^{-}(\Gamma))$ $Var(u : A) = Var(\partial^{+}(\Gamma))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
Existence of compositions:

Every pasting scheme can be composed

Rule for generating these compositions:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \partial^{-}(\Gamma) \vdash t : A \quad \partial^{+}(\Gamma) \vdash u : A}{\Gamma \vdash \mathsf{op}_{\Gamma, t \xrightarrow{A} u} : t \xrightarrow{A} u} \qquad \begin{array}{c} \mathsf{Var}(t : A) = \mathsf{Var}(\partial^{-}(\Gamma)) \\ \mathsf{Var}(u : A) = \mathsf{Var}(\partial^{+}(\Gamma)) \end{array}$$

$$\Gamma = x : \star, y : \star, f : x \underset{\star}{\rightarrow} y, z : \star, g : y \underset{\star}{\rightarrow} z$$
$$\Gamma \vdash \operatorname{comp} : x \rightarrow z$$

Example

Existence of compositions:
 Every pasting scheme can be composed

▷ general "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Existence of compositions:

Every pasting scheme can be composed

general "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Rule for generating these associativities:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash \mathsf{coh}_{\Gamma, t \xrightarrow{A} u} : t \xrightarrow{A} u}$$

 $Var(t : A) = Var(\Gamma)$ $Var(u : A) = Var(\Gamma)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Existence of compositions:

Every pasting scheme can be composed

▷ general "Associativities": Any two ways of composing the same pasting scheme are related by a higher cell

Rule for generating these associativities:

$$\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash \operatorname{coh}_{\Gamma, t \xrightarrow{A} u} : t \xrightarrow{A} u} \qquad \begin{array}{c} \operatorname{Var}(t : A) = \operatorname{Var}(\Gamma) \\ \operatorname{Var}(u : A) = \operatorname{Var}(\Gamma) \end{array}$$

$$\begin{split} & \Gamma = x: \star, y: \star, f: x \underset{\star}{\rightarrow} y, z: \star, g: y \underset{\star}{\rightarrow} z, w: \star, h: z \underset{\star}{\rightarrow} w \\ & \Gamma \vdash \texttt{assoc:comp f}(\texttt{comp g h}) {\rightarrow} \texttt{comp f}(\texttt{comp f g}) \texttt{h} \end{split}$$

Example

Encoding the theory

Recall the syntactic category: $\mathcal{S}_{\mathsf{CaTT}}$

- ▷ objects = contexts of the theory CaTT
- ▷ morphisms = substitutions of the theory

This category carries a structure of CwF

$Suspension \ in \ CaTT$

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

A problem with CaTT

Writing in CaTT may be very tedious :

 $x \rightsquigarrow x \xrightarrow{\mathsf{id}_x} x$

coh id (x:*):x ->x

A problem with CaTT

Writing in CaTT may be very tedious :

$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{g} x \xrightarrow{g \circ f} z \qquad x \xrightarrow{g \circ f} z \qquad x \xrightarrow{g} x \xrightarrow{g$$

1

$$\begin{array}{c|c} \xrightarrow{g \circ f} z \\ \xrightarrow{f} & \xrightarrow{f} & \xrightarrow{f} & \xrightarrow{f} \\ \xrightarrow{\downarrow \alpha} & \xrightarrow{g \to y} & \xrightarrow{\chi} & \xrightarrow{f} & \xrightarrow{\chi} \\ \xrightarrow{\downarrow \beta} & \xrightarrow{h} & \xrightarrow{h} \\ \text{coh vcomp } (x:*)(y:*)(f:x->y)(g:x->y) \\ & (a:f->g)(h:x->y)(b:g->h):f->h \end{array}$$

A problem with CaTT

Writing in CaTT may be very tedious :

A solution: the suspension

Idea: Write only the left term and let the software generate the right one.

coh id (x:*):x->x $\xrightarrow{\text{suspension}}$ coh id2 (x:*)(y:*)(f:x->y):f->f

Practice: Generate the terms on the fly using the dimension of the argument.

coh	id	(x:*):x->x	
let	ex	(x:*)(y:*)(f:x->y)=id f	

coh id (x:*):x->x
coh id2 (x:*)(y:*)(f:x->y):f->f
let ex (x:*)(y:*)(f:x->y)=id2 f

・ロト ・ 四ト ・ ヨト ・ ヨト ・ 日 ・ 今々ぐ

$$\Sigma \varnothing = (x_0 : \star, y_0 : \star)$$
 $\Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$

$$\Sigma \varnothing = (x_0 : \star, y_0 : \star) \qquad \Sigma(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A$$

$$\Sigma \star = x_0 \underset{\star}{\rightarrow} y_0 \qquad \Sigma(t \underset{\Delta}{\rightarrow} u) = \Sigma t \underset{\Sigma A}{\longrightarrow} \Sigma u$$

$$\begin{split} \Sigma \varnothing &= (x_0 : \star, y_0 : \star) \\ \Sigma \star &= x_0 \mathop{\longrightarrow}\limits_{\star} y_0 \\ \Sigma x &= x \end{split} \qquad \begin{aligned} \Sigma (\Gamma, x : A) &= \Sigma \Gamma, x : \Sigma A \\ \Sigma (t \mathop{\longrightarrow}\limits_{A} u) &= \Sigma t \mathop{\longrightarrow}\limits_{\Sigma A} \Sigma u \\ \Sigma (\operatorname{coh}_{\Gamma, A} [\gamma]) &= \operatorname{coh}_{\Sigma \Gamma, \Sigma A} [\Sigma \gamma] \end{split}$$

Induction over the syntax: Define the suspension as a meta-operation on the syntax of the type theory.

$$\begin{split} \Sigma \varnothing &= (x_0 : \star, y_0 : \star) \\ \Sigma &= x_0 \mathop{\longrightarrow}\limits_{\star} y_0 \\ \Sigma &= x \\ \Sigma &= x \\ \Sigma &= x \\ \Sigma &= \chi \\$$

◆□ ◆ ▲□ ◆ ▲□ ◆ ▲□ ◆ ▲□ ◆

Illustration

On contexts:

Illustration

On contexts:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Well-definedness of the suspension

$$\begin{split} \Sigma \varnothing &= (x_0 : *, y_0 : *) \\ \Sigma &= x_0 \to y_0 \\ \Sigma &= x \\ \Sigma &= x \\ \Sigma &= \langle x_0 \mapsto x_0, y_0 \mapsto y_0 \rangle \end{split} \qquad \begin{split} \Sigma &(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A \\ \Sigma &(\Gamma \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma u \\ \Sigma &(\tau \to u) = \Sigma T \to \Sigma T \\ \Sigma &(\tau \to u) =$$

Well-definedness of the suspension

$$\begin{split} \Sigma \varnothing &= (x_0 : *, y_0 : *) \\ \Sigma &= x_0 \rightarrow y_0 \\ \Sigma &= x \\ \Sigma(\langle \rangle) &= \langle x_0 \mapsto x_0, y_0 \mapsto y_0 \rangle \end{split} \qquad \begin{split} \Sigma &(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A \\ \Sigma &(\Gamma, x) = \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma \Sigma X \\ \Sigma(t \xrightarrow{$$

Theorem (B., Mimram) The following rules are derivable

$$\frac{\Gamma \vdash}{\Sigma \Gamma \vdash} \qquad \frac{\Gamma \vdash A}{\Sigma \Gamma \vdash \Sigma A} \qquad \frac{\Gamma \vdash t : A}{\Sigma \Gamma \vdash \Sigma t : \Sigma A} \qquad \frac{\Delta \vdash \gamma : \Gamma}{\Sigma \Delta \vdash \Sigma \gamma : \Sigma \Gamma}$$

Well-definedness of the suspension

< ロ > < 母 > < 主 > < 主 > < 主 > の < や

$$\begin{split} \Sigma \varnothing &= (x_0 : *, y_0 : *) \\ \Sigma &= x_0 \to y_0 \\ \Sigma &= x \\ \Sigma(\langle \rangle) &= \langle x_0 \mapsto x_0, y_0 \mapsto y_0 \rangle \end{split} \qquad \begin{split} \Sigma &(\Gamma, x : A) = \Sigma \Gamma, x : \Sigma A \\ \Sigma &(\Gamma, x) = \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} A u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma A \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma T \xrightarrow{} \Sigma X \\ \Sigma(t \xrightarrow{} X u) &= \Sigma \Sigma X \\ \Sigma(t \xrightarrow{$$

Theorem (B., Mimram) The following rules are derivable

$$\frac{\Gamma \vdash}{\Sigma \Gamma \vdash} \qquad \frac{\Gamma \vdash A}{\Sigma \Gamma \vdash \Sigma A} \qquad \frac{\Gamma \vdash t : A}{\Sigma \Gamma \vdash \Sigma t : \Sigma A} \qquad \frac{\Delta \vdash \gamma : \Gamma}{\Sigma \Delta \vdash \Sigma \gamma : \Sigma \Gamma}$$

Proof.

By induction over the rules of the theory

Internally:

Internally:

▷ The system computes the difference in the dimension of the argument unit expects an argument of dimension 1, a is of dimension 2 →→ suspend once

Internally:

- ▷ The system computes the difference in the dimension of the argument unit expects an argument of dimension 1,a is of dimension 2 → suspend once
- ▷ Compute the suspension of unit

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Internally:

- ▷ The system computes the difference in the dimension of the argument unit expects an argument of dimension 1, a is of dimension 2 → suspend once
- Compute the suspension of unit
- ▷ Compute the suspension of comp

Internally:

- ▷ The system computes the difference in the dimension of the argument unit expects an argument of dimension 1, a is of dimension 2 → suspend once
- Compute the suspension of unit
- ▷ Compute the suspension of comp
- ▷ compute the suspension of id

 Recall :

- \triangleright Information about the derivable syntax is stored in the syntactic category
- > The suspension defined on the syntax respects the derivability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへで

Recall:

- \triangleright Information about the derivable syntax is stored in the syntactic category
- > The suspension defined on the syntax respects the derivability
- ${\ensuremath{{\scriptstyle \sqcup}}}$ The suspension lifts on the category syntactic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへで

Recall:

- \triangleright Information about the derivable syntax is stored in the syntactic category
- > The suspension defined on the syntax respects the derivability
- ↓ The suspension lifts on the category syntactic

$$\mathcal{S}_{CaTT} \xrightarrow{\Sigma()} \mathcal{S}_{CaTT}$$

 $\Sigma() \text{ is a morphism of CwF}$

Recall:

- \triangleright Information about the derivable syntax is stored in the syntactic category
- > The suspension defined on the syntax respects the derivability
- ↓ The suspension lifts on the category syntactic

$$\mathcal{S}_{\mathsf{CaTT}} \xrightarrow{\Sigma()} \mathcal{S}_{\mathsf{CaTT}}$$

 $\Sigma() \text{ is a morphism of CwF}$

See the semantics

Another example: The functorialization

The functorialization is another meta-operation on the syntax

Another example: The functorialization

The functorialization is another meta-operation on the syntax

It translates another property of the theory of weak $\omega\text{-}categories$ The operations in a higher category define functors

Another example: The functorialization

The functorialization is another meta-operation on the syntax

It translates another property of the theory of weak $\omega\text{-categories}$ The operations in a higher category define functors

Problem: This operation is not always well-defined. It only defines a partial endomorphism of CwFs

Semantics

The Grothendieck-Maltsiniotis definition of ω -categories

- ▷ Define the category Θ₀ of pasting schemes Characterized as colimits: globular sums
- $\label{eq:complete} \begin{array}{l} \triangleright \mbox{ Complete it into the category } \Theta_{\infty} \\ \mbox{ Add lift conditions, while preserving globular sums. The extension } \Theta_0 \hookrightarrow \Theta_{\infty} \\ \mbox{ defined by universal property} \end{array}$
- \triangleright The weak ω -categories are functors $\Theta_{\infty} \rightarrow Set$ which preserve the globular sums

A categorical view of ps-contexts

Define the full subcategory $S_{PS} \hookrightarrow S_{CaTT}$:

▷ objects=ps-contexts
A categorical view of ps-contexts

Define the full subcategory $\mathcal{S}_{\mathsf{PS}} \hookrightarrow \mathcal{S}_{\mathsf{CaTT}}$:

▷ objects=ps-contexts

Theorem (Finster, Mimram)

There is an equivalence of categories $\Theta_0^{op}\simeq \mathcal{S}_{PS,0}$

A categorical view of ps-contexts

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Define the full subcategory $\mathcal{S}_{\mathsf{PS}} \hookrightarrow \mathcal{S}_{\mathsf{CaTT}}$:

▷ objects=ps-contexts

Theorem (Finster, Mimram)

There is an equivalence of categories $\Theta_0^{op}\simeq \mathcal{S}_{PS,0}$

Note: $\mathcal{S}_{PS,0}$ is the category \mathcal{S}_{PS} removing all non-variable terms

Ps-contexts with coherences

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Theorem (B., Finster, Mimram)

There is an equivalence of categories $\Theta^{op}_\infty \simeq \mathcal{S}_{PS}$

Proof.

- $\triangleright~$ The inclusion $\mathcal{S}_{\mathsf{PS},0} \to \mathcal{S}_{\mathsf{PS}}$ preserves the globular products
- $\triangleright~$ The inclusion $\mathcal{S}_{PS,0}\to\mathcal{S}_{PS}$ satisfies the universal property dual of the inclusion $\Theta_0\to\Theta_\infty$

The syntactic category \mathcal{S}_{CaTT}

Theorem (B., Finster, Mimram) The inclusion functor $S_{PS} \hookrightarrow S_{CaTT}$ is codense

The syntactic category \mathcal{S}_{CaTT}

Theorem (B., Finster, Mimram) The inclusion functor $S_{PS} \hookrightarrow S_{CaTT}$ is codense

The syntactic category \mathcal{S}_{CaTT}

Theorem (B., Finster, Mimram) The inclusion functor $S_{PS} \hookrightarrow S_{CaTT}$ is codense

Every context is canonically a limit of ps-contexts

A universal property of the extension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary

The inclusion functor $S_{PS} \hookrightarrow S_{CaTT}$ induces an equivalence of categories

$$[\mathcal{S}_{\mathsf{CaTT}}, \operatorname{Set}]_{\textit{canonical limits}} \simeq [\mathcal{S}_{\mathsf{PS}}, \operatorname{Set}]_{\textit{globular products}}$$

Theorem (B., Finster, Mimram)

The models of CaTT are equivalent to the weak ω -categories

Theorem (B., Finster, Mimram) The models of CaTT are equivalent to the weak ω -categories Proof.

 $[\mathcal{S}_{\mathsf{CaTT}}, \operatorname{Set}]_{\mathsf{CwF}} \simeq [\mathcal{S}_{\mathsf{CaTT}}, \operatorname{Set}]_{\mathsf{canonical limits}}$

Theorem (B., Finster, Mimram) The models of CaTT are equivalent to the weak ω -categories Proof.

$$\begin{split} [\mathcal{S}_{\mathsf{CaTT}}, \mathrm{Set}]_{\mathsf{CwF}} &\simeq [\mathcal{S}_{\mathsf{CaTT}}, \mathrm{Set}]_{\mathsf{canonical limits}} \\ &\simeq [\mathcal{S}_{\mathsf{PS}}, \mathrm{Set}]_{\mathsf{globular products}} \end{split}$$

Theorem (B., Finster, Mimram) The models of CaTT are equivalent to the weak ω -categories Proof.

$$[\mathcal{S}_{\mathsf{CaTT}}, \operatorname{Set}]_{\mathsf{CwF}} \simeq [\mathcal{S}_{\mathsf{CaTT}}, \operatorname{Set}]_{\mathsf{canonical limits}}$$

 $\simeq [\mathcal{S}_{\mathsf{PS}}, \operatorname{Set}]_{\mathsf{globular products}}$
 $\simeq [\Theta^{\mathsf{op}}_{\infty}, \operatorname{Set}]_{\mathsf{globular sums}}$

Thank you!

