Globular weak ω -categories as models of a type theory

Thibaut Benjamin, Eric Finster, Samuel Mimram

CEA, LIST

HoTT/UF, 17/07/21

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▷ CaTT (Finster et Mimram) [3] is a type theory for describing weak ω-categories

For this talk, ω -categories = directed ω -groupoids

 CaTT (Finster et Mimram) [3] is a type theory for describing weak ω-categories
For this talk, ω-categories = directed ω-groupoids

 \triangleright It is *a* type theory : not a work inside HoTT.

 CaTT (Finster et Mimram) [3] is a type theory for describing weak ω-categories
For this talk, ω-categories = directed ω-groupoids

 \triangleright It is *a* type theory : not a work inside HoTT.

It is inspired by Brunerie's type theory [2].
A type theory that describes ω-groupoids = the combinatorics of the identity type in HoTT

 CaTT (Finster et Mimram) [3] is a type theory for describing weak ω-categories
For this talk, ω-categories = directed ω-groupoids

 \triangleright It is *a* type theory : not a work inside HoTT.

It is inspired by Brunerie's type theory [2].
A type theory that describes ω-groupoids = the combinatorics of the identity type in HoTT

It aims at proving *coherences*.
It cannot define an ω-categories, but can only prove their combinatorics

Quick historical overview

 $\triangleright\,$ There are a lot of definitions of weak $\omega\text{-categories:}\,$ not all of them are known to be equivalent

Quick historical overview

 $\triangleright\,$ There are a lot of definitions of weak $\omega\text{-categories:}\,$ not all of them are known to be equivalent

 CaTT is based on a definition due to Maltsiniotis [5] relying on ideas of Grothendieck [4]

Quick historical overview

 $\triangleright\,$ There are a lot of definitions of weak $\omega\text{-categories:}\,$ not all of them are known to be equivalent

 CaTT is based on a definition due to Maltsiniotis [5] relying on ideas of Grothendieck [4]

```
\begin{array}{c} \text{Grothendieck weak} \\ \omega \text{-groupoids [4]} \\ \texttt{type theory} \\ \texttt{type theory} \\ \text{Frunctice's type theory [2]} \end{array} \xrightarrow{\text{directionality}} \begin{array}{c} \text{Grothendieck-Maltsiniotis weak} \\ \omega \text{-cateogries [5]} \\ \texttt{type theory} \\ \texttt{type theory} \\ \texttt{for theory} \\ \texttt{Grothendieck-Maltsiniotis weak} \\ \omega \text{-cateogries [5]} \\ \texttt{type theory} \\ \texttt{for theory} \\ \texttt{Grothendieck-Maltsiniotis weak} \\ \text{for theory} \\ \texttt{for theory} \\
```

Aim of the talk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Establish a formal relation between CaTT and Grothendieck-Maltsiniotis weak ω-groupoids Through the notion of semantics

Aim of the talk

 Establish a formal relation between CaTT and Grothendieck-Maltsiniotis weak ω-groupoids Through the notion of semantics

Present the paper [1]

weak ω -categories as models of a type theory, B., Mimram, Finster, https://arxiv.org/abs/2106.04475

Aim of the talk

 Establish a formal relation between CaTT and Grothendieck-Maltsiniotis weak ω-groupoids Through the notion of semantics

Present the paper [1]

weak ω -categories as models of a type theory, B., Mimram, Finster, https://arxiv.org/abs/2106.04475

For today: Give a few examples with CaTT and study the semantics for globular sets.

A few examples in CaTT

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

https://thibautbenjamin.github.io/catt/

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

https://thibautbenjamin.github.io/catt/

(ロト (母) (主) (主) の()

https://thibautbenjamin.github.io/catt/

https://thibautbenjamin.github.io/catt/

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

https://thibautbenjamin.github.io/catt/

https://thibautbenjamin.github.io/catt/

https://thibautbenjamin.github.io/catt/

 $coh id (x:*) : x \rightarrow x$

identity of objects

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

coh unit (x:*)(y:*)(f:x->y) : comp (id x) f -> f

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The theory GSeTT and its models

<□ > < @ > < E > < E > E のQ @

Globular sets

 $\triangleright\,$ They are the carriers of weak $\omega\text{-categories}$ but without structures

Globular sets

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\triangleright~$ They are the carriers of weak $\omega\text{-}\mathsf{categories}$ but without structures

▷ They are made up of vertices, arrows, 2-cells, 3-cells...

Globular sets

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

 $\triangleright\,$ They are the carriers of weak $\omega\text{-categories}$ but without structures

▷ They are made up of vertices, arrows, 2-cells, 3-cells...

> They are presheaves over the base category

$$\mathcal{G} = 0 \xrightarrow[t]{s} 1 \xrightarrow[t]{s} 2 \xrightarrow[t]{s} \cdots \qquad \begin{array}{c} ts = ss \\ st = tt \end{array}$$

The theory GSeTT

▷ It describes the globular sets

The theory GSeTT

▷ It describes the globular sets

This theory has two type constructors and no term constructors

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash t : A \qquad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{A} u}$$
The theory GSeTT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▷ It describes the globular sets

This theory has two type constructors and no term constructors

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash t : A \qquad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{A} u}$$

▷ We can use it to describe the shapes of cells

The syntactic category

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

A context Γ induces a finite globular set VΓ
We can read off directly a globular set from a context (like before)

The syntactic category

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

A context Γ induces a finite globular set VΓ
We can read off directly a globular set from a context (like before)

 $\triangleright A \text{ substitution } \Delta \vdash \gamma : \Gamma \text{ defines a morphism of globular sets} V\gamma : V\Gamma \rightarrow V\Delta$

The syntactic category

A context Γ induces a finite globular set VΓ
We can read off directly a globular set from a context (like before)

 $\vdash A \text{ substitution } \Delta \vdash \gamma : \Gamma \text{ defines a morphism of globular sets} V\gamma : V\Gamma \to V\Delta$

Theorem

The syntactic category S_{GSeTT} (objects=contexts, morphisms=substitutions) is the opposite of the category of finite globular sets FinGSet.

Disks and sphere contexts

Some special contexts in the theory GSeTT.

Disks and sphere contexts

Some special contexts in the theory GSeTT.

Disks are equipped with source and target substitution

Disks and sphere contexts

Some special contexts in the theory GSeTT.

Disks are equipped with source and target substitution

This gives a functor $D^{\bullet}: \mathcal{G}^{\mathsf{op}} \to \mathcal{S}_{\mathsf{GSeTT}}$

 \triangleright The syntactic category is a category with families (*CwF*).

 \triangleright The syntactic category is a category with families (*CwF*).

The models of the theory are the morphisms of CwF from the syntactic category to Set.
Intuition: see the rules of the theory as axioms of a logical theory, and incarnate them in sets

 \triangleright The syntactic category is a category with families (*CwF*).

 The models of the theory are the morphisms of CwF from the syntactic category to Set.
Intuition: see the rules of the theory as axioms of a logical theory, and incarnate them in sets

Theorem

The models of the theory GSeTT are equivalent to globular sets.

(ロ)、(型)、(E)、(E)、 E) のQ(()

 $\mathsf{Models} = \mathsf{CwF} \text{ morphisms } \mathcal{S}_{\mathsf{GSeTT}} \to \mathsf{Set}.$

$$\mathcal{S}_{\mathsf{GSeTT}} \xrightarrow{CwF} \mathsf{Set}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $\mathsf{Models} = \mathsf{CwF} \text{ morphisms } \mathcal{S}_{\mathsf{GSeTT}} \to \mathsf{Set}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\mathsf{Models} = \mathsf{CwF} \text{ morphisms } \mathcal{S}_{\mathsf{GSeTT}} \to \mathsf{Set}.$

 $\mathsf{Models} = \mathsf{CwF} \text{ morphisms } \mathcal{S}_{\mathsf{GSeTT}} \to \mathsf{Set}.$

In this case: CwF morphism \Leftrightarrow preserves finite limits.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

 $\mathsf{Models} = \mathsf{CwF} \text{ morphisms } \mathcal{S}_{\mathsf{GSeTT}} \to \mathsf{Set}.$

In this case: CwF morphism \Leftrightarrow preserves finite limits.

$$\mathsf{Mod}(\mathcal{S}_{\mathsf{GSeTT}}) \simeq [\mathsf{FinGSet}^{\mathsf{op}}, \mathit{Set}]_{\mathrm{finite\ lim}}$$

 $\simeq [\mathcal{G}^{\mathsf{op}}, \mathit{Set}]$

Semantics of the theory GSeTT

The universal property of disks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▷ The sphere contexts classify the types:

 $\mathsf{Ty}(\Gamma) \simeq \bigsqcup_{n \ge -1} \mathcal{S}_{\mathsf{GSeTT}}(\Gamma, S^n)$

The universal property of disks

▷ The sphere contexts classify the types:

$$\mathsf{Ty}(\Gamma) \simeq \bigsqcup_{n \ge -1} \mathcal{S}_{\mathsf{GSeTT}}(\Gamma, S^n)$$

$$\begin{array}{l} \triangleright \ \, \text{For instance} : \ \, \Gamma = \begin{pmatrix} x : \star, y : \star, z : \star, f : x \to y, g : x \to y \end{pmatrix} \\ & \star \longleftrightarrow \langle \rangle \qquad \qquad z \to x \Leftrightarrow \langle z, x \rangle \\ & g \to f \iff \langle x, y, g, f \rangle \end{array}$$

The universal property of disks

▷ The sphere contexts classify the types:

$$\mathsf{Ty}(\Gamma) \simeq \bigsqcup_{n \ge -1} \mathcal{S}_{\mathsf{GSeTT}}(\Gamma, S^n)$$

$$\begin{array}{l} \triangleright \ \, \text{For instance} : \ \, \Gamma = \begin{pmatrix} x : \star, y : \star, z : \star, f : x \to y, g : x \to y \end{pmatrix} \\ & \star \longleftrightarrow \langle \rangle \qquad \qquad z \to x \longleftrightarrow \langle z, x \rangle \\ & g \to f \iff \langle x, y, g, f \rangle \end{array}$$

The disks contexts classify the terms

$$\mathsf{Tm}(\Gamma) \simeq \bigsqcup_{n \ge 0} \mathcal{S}_{\mathsf{GSeTT}}(\Gamma, D^n)$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Recall the functor $V:\mathsf{FinGSet}^\mathsf{op}\to \mathcal{S}_\mathsf{GSeTT}$

 \triangleright Obtained by "reading off" the variables of a contexts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall the functor $V : \mathsf{FinGSet}^{\mathsf{op}} \to \mathcal{S}_{\mathsf{GSeTT}}$

 \triangleright Obtained by "reading off" the variables of a contexts

▷ Universal property of disks : $V(\Gamma) \simeq S_{GSeTT}(\Gamma, D^{\bullet})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall the functor $V : \mathsf{FinGSet}^{\mathsf{op}} \to \mathcal{S}_{\mathsf{GSeTT}}$

 \triangleright Obtained by "reading off" the variables of a contexts

 \triangleright Universal property of disks : $V(\Gamma) \simeq S_{GSeTT}(\Gamma, D^{\bullet})$

 \triangleright V is the nerve functor associated to the functor D^{\bullet}

Recall the functor $V : \mathsf{FinGSet}^{\mathsf{op}} \to \mathcal{S}_{\mathsf{GSeTT}}$

▷ Obtained by "reading off" the variables of a contexts

 \triangleright Universal property of disks : $V(\Gamma) \simeq S_{GSeTT}(\Gamma, D^{\bullet})$

 \triangleright V is the nerve functor associated to the functor D^{\bullet}

▷ There is a natural isomorphism

$$S_{\mathsf{GSeTT}}(\Delta, \Gamma) \simeq \mathsf{FinGSet}(V\Gamma, V\Delta)$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

The models(2 - in the paper: globular CwF) of the theory GSeTT are the CwF that allow to express at least as much as GSeTT.

The models(2 - in the paper: globular CwF) of the theory GSeTT are the CwF that allow to express at least as much as GSeTT.

The models(2 - in the paper: globular CwF) of the theory GSeTT are the CwF that allow to express at least as much as GSeTT.

 $\triangleright~$ The are the CwF that support the type \star and its iterated $\rightarrow~$ types.

 $\triangleright\,$ Expressible by categorical means: $\mathcal{G}^{\mathsf{op}} \to \mathcal{C}$ such that

The models(2 - in the paper: globular CwF) of the theory GSeTT are the CwF that allow to express at least as much as GSeTT.

- $\triangleright\,$ Expressible by categorical means: $\mathcal{G}^{\mathsf{op}} \to \mathcal{C}$ such that
 - morphisms are sent to display maps

The models(2 - in the paper: globular CwF) of the theory GSeTT are the CwF that allow to express at least as much as GSeTT.

- $\triangleright\,$ Expressible by categorical means: $\mathcal{G}^{\mathsf{op}} \to \mathcal{C}$ such that
 - morphisms are sent to display maps
 - disks and spheres satisfy the same universal property as in GSeTT

The models(2 - in the paper: globular CwF) of the theory GSeTT are the CwF that allow to express at least as much as GSeTT.

- $\triangleright\,$ Expressible by categorical means: $\mathcal{G}^{\mathsf{op}} \to \mathcal{C}$ such that
 - morphisms are sent to display maps
 - disks and spheres satisfy the same universal property as in GSeTT
- A CwF morphism $\mathcal{S}_{\mathsf{GSeTT}} \to \mathcal{C}$ induces a globular CwF on $\mathcal C$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem The category S_{GSeTT} is the initial globular CwF

Proof. Consider a globular CwF

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

The category S_{GSeTT} is the initial globular CwF

Proof.

Consider a globular CwF

Theorem

The category S_{GSeTT} is the initial globular CwF

Proof.

Consider a globular CwF

(1) \Rightarrow Ran_D• *F* exists globular CwF \Rightarrow Ran_D• *F* is a CwF morphism and makes the diagram commute

Theorem

The category S_{GSeTT} is the initial globular CwF

Proof.

Consider a globular CwF

(1) \Rightarrow Ran_D• *F* exists globular CwF \Rightarrow Ran_D• *F* is a CwF morphism and makes the diagram commute

Corollary

The models of S_{GSeTT} are equivalent to globular CwF structures on Set.

Models GSeTT

Theorem

The models of S_{GSeTT} are equivalent to globular sets.

Proof.

globular CwF structures on Set are equivalent to functors $\mathcal{G}^{op} \to$ Set, i.e., globular sets.

Models GSeTT

Theorem

The models of S_{GSeTT} are equivalent to globular sets.

Proof.

globular CwF structures on Set are equivalent to functors $\mathcal{G}^{op} \to$ Set, i.e., globular sets.

This proof is the same as the previous one in essence, but

Models GSeTT

Theorem

The models of S_{GSeTT} are equivalent to globular sets.

Proof.

globular CwF structures on Set are equivalent to functors $\mathcal{G}^{\rm op}\to$ Set, i.e., globular sets.

This proof is the same as the previous one in essence, but

▷ It accounts for the CwF structure in the universal property
Models GSeTT

Theorem

The models of S_{GSeTT} are equivalent to globular sets.

Proof.

globular CwF structures on Set are equivalent to functors $\mathcal{G}^{\rm op}\to$ Set, i.e., globular sets.

This proof is the same as the previous one in essence, but

- ▷ It accounts for the CwF structure in the universal property
- It is agnostic about the the syntactic category and the preserved limits

A word on the semantics of CaTT

 \triangleright Use the same structure as the second proof for GSeTT.

▷ Use the same structure as the second proof for GSeTT.

▷ A notion of models for CaTT: cat-CwF

 \triangleright Use the same structure as the second proof for GSeTT.

▷ A notion of models for CaTT: cat-CwF

Prove the initiality theorem:
Theorem
S_{CaTT} is the initial cat-CwF

 \triangleright Use the same structure as the second proof for GSeTT.

▷ A notion of models for CaTT: cat-CwF

Prove the initiality theorem:
Theorem
S_{CaTT} is the initial cat-CwF

 As a consequence, models of CaTT are equivalent to cat-CwF structures on Set

▷ Use the same structure as the second proof for GSeTT.

▷ A notion of models for CaTT: cat-CwF

Prove the initiality theorem:
Theorem
S_{CaTT} is the initial cat-CwF

 As a consequence, models of CaTT are equivalent to cat-CwF structures on Set

 \triangleright Cat-CwF structures on Set are equivalent to weak ω -categories

References I

Thibaut Benjamin, Eric Finster, and Samuel Mimram. Globular weak ω-categories as models of a type theory. arXiv preprint arXiv:2106.04475, 2021.

Guillaume Brunerie.

On the homotopy groups of spheres in homotopy type theory. *arXiv preprint arXiv:1606.05916*, 2016.

Eric Finster and Samuel Mimram.

A Type-Theoretical Definition of Weak ω -Categories. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12, 2017.

Alexander Grothendieck. Pursuing stacks.

Unpublished manuscript, 1983.

References II

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Georges Maltsiniotis.

Grothendieck $\infty\text{-}\mathsf{groupoids},$ and still another definition of $\infty\text{-}\mathsf{categories}.$

Preprint arXiv:1009.2331, 2010.