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A short introduction of CaTT
. CaTT (Finster et Mimram) [3] is a type theory for describing

weak ω-categories
For this talk, ω-categories = directed ω-groupoids

. It is a type theory : not a work inside HoTT.

. It is inspired by Brunerie’s type theory [2].
A type theory that describes ω-groupoids = the combinatorics of
the identity type in HoTT

. It aims at proving coherences.
It cannot define an ω-categories, but can only prove their
combinatorics
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Quick historical overview

. There are a lot of definitions of weak ω-categories: not all of
them are known to be equivalent

. CaTT is based on a definition due to Maltsiniotis [5] relying on
ideas of Grothendieck [4]
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Aim of the talk

. Establish a formal relation between CaTT and
Grothendieck-Maltsiniotis weak ω-groupoids
Through the notion of semantics

. Present the paper [1]
weak ω-categories as models of a type theory, B., Mimram, Finster,
https://arxiv.org/abs/2106.04475

. For today: Give a few examples with CaTT and study the
semantics for globular sets.

https://arxiv.org/abs/2106.04475
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A few examples in CaTT
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The theory GSeTT and its models



Globular sets

. They are the carriers of weak ω-categories but without
structures

. They are made up of vertices, arrows, 2-cells, 3-cells. . .

• • •⇓

. They are presheaves over the base category

G = 0 1 2 · · ·
s

t
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The theory GSeTT

. It describes the globular sets

. This theory has two type constructors and no term
constructors

Γ `
Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t −→
A

u

. We can use it to describe the shapes of cells
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The syntactic category

. A context Γ induces a finite globular set VΓ
We can read off directly a globular set from a context (like before)

(x:*,y:*,z:*,
f:x->y,g:x->y,
h:z->y,k:z->x,
a:f->g)

 x y z

f

g

⇓a
h

k

. A substitution ∆ ` γ : Γ defines a morphism of globular sets
V γ : VΓ→ V∆

Theorem
The syntactic category SGSeTT (objects=contexts,
morphisms=substitutions) is the opposite of the category of finite
globular sets FinGSet.
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Disks and sphere contexts

Some special contexts in the theory GSeTT.

D0 = • S0 = • •

D1 = • • S1 = • •

D2 = • •⇓ S2 = • •⇓ ⇓

Disks are equipped with source and target substitution

This gives a functor D• : Gop → SGSeTT
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Models of the theory (1)

. The syntactic category is a category with families (CwF).

. The models of the theory are the morphisms of CwF from the
syntactic category to Set.
Intuition: see the rules of the theory as axioms of a logical theory,
and incarnate them in sets

Theorem
The models of the theory GSeTT are equivalent to globular sets.
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Idea of the proof

Models = CwF morphisms SGSeTT → Set.

SGSeTT Set
V
∼ CwF

D•
Yop

In this case: CwF morphism ⇔ preserves finite limits.

Mod(SGSeTT) ' [FinGSetop,Set]finite lim

' [Gop,Set]
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Semantics of the theory GSeTT



The universal property of disks
. The sphere contexts classify the types:

Ty(Γ) '
⊔

n≥−1

SGSeTT(Γ,Sn)

. For instance : Γ = (x : ?, y : ?, z : ?, f : x → y , g : x → y)

?! 〈〉 z → x! 〈z , x〉
g → f ! 〈x , y , g , f 〉

. The disks contexts classify the terms

Tm(Γ) '
⊔
n≥0

SGSeTT(Γ,Dn)
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A new take on the V functor

Recall the functor V : FinGSetop → SGSeTT

. Obtained by “reading off” the variables of a contexts

. Universal property of disks : V (Γ) ' SGSeTT(Γ,D•)

. V is the nerve functor associated to the functor D•

. There is a natural isomorphism

SGSeTT(∆, Γ) ' FinGSet(VΓ,V∆) (1)
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Models of the theory (2)

The models(2 - in the paper: globular CwF) of the theory GSeTT
are the CwF that allow to express at least as much as GSeTT.

. The are the CwF that support the type ? and its iterated →
types.

. Expressible by categorical means: Gop → C such that

• morphisms are sent to display maps
• disks and spheres satisfy the same universal property as in

GSeTT

A CwF morphism SGSeTT → C induces a globular CwF on C
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The initiality theorem
Theorem
The category SGSeTT is the initial globular CwF

Proof.
Consider a globular CwF

C

Gop

RanD• F

FD•

(1) ⇒ RanD• F exists
globular CwF ⇒ RanD• F is a CwF morphism and makes the
diagram commute

Corollary
The models of SGSeTT are equivalent to globular CwF structures on
Set.
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. It accounts for the CwF structure in the universal property

. It is agnostic about the the syntactic category and the
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. Cat-CwF structures on Set are equivalent to weak ω-categories
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