
Towards a fully formalised proof of the syllepsis
in triply monoidal ω-categories

Samuel Mimram, Eric Finster, Thibaut Benjamin

Ecole Polytechnique

07/07/2018



Goal

Give a formalisation of the definition of syllepsis in triply
monoidal ω-categories, using the type theory CaTT defined by
Finster and Mimram
The implementation we are using is available at
https://github.com/ThiBen/catt

https://github.com/ThiBen/catt


Motivations

• First proof for which the prover is needed

expected, but not proven result



Motivations

• First proof for which the prover is needed

• Extensive test of the implementation

various bugs could stay unnoticed on smaller projects



Motivations

• First proof for which the prover is needed

• Extensive test of the implementation

• Understanding of the practical use of CaTT

will guide the future developments



Outline



Type: globular sets

• To start with, we have a type theory with two type
constructors

Γ `
Γ ` ?

Γ ` A Γ ` x : A Γ ` y : A

Γ ` x →
A

y

• Contexts of this theory describe globular sets in the
following sense

x:*, y:*, z:*,
f:x->y, g:x->y,
h:z->y, k:y->z,
a:f->g

' x y z

f

g

k

h

a



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme
• Checking coherences
• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme

Definition
Pasting scheme are the globular sets that are in a "generic
composable position"

Example

• Coherence: operation of composing a pasting scheme
• Checking coherences
• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme

Examples
Operation Pasting scheme Result

•

Identity x x → x

• Composition x
f→ y

g→ z x → z

• Associativity x
f→ y

g→ z
h→ w f ? (g ? h)→ (f ? g) ? h

• Checking coherences
• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme

Examples
Operation Pasting scheme Result

•

Identity x x → x

•

Composition x
f→ y

g→ z x → z

• Associativity x
f→ y

g→ z
h→ w f ? (g ? h)→ (f ? g) ? h

• Checking coherences
• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme

Examples
Operation Pasting scheme Result

•

Identity x x → x

•

Composition x
f→ y

g→ z x → z

•

Associativity x
f→ y

g→ z
h→ w f ? (g ? h)→ (f ? g) ? h

• Checking coherences
• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme

Examples
Operation Pasting scheme Result
• Identity x x → x

•

Composition x
f→ y

g→ z x → z

•

Associativity x
f→ y

g→ z
h→ w f ? (g ? h)→ (f ? g) ? h

coh id (x : *) : x -> x

• Checking coherences
• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme

Examples
Operation Pasting scheme Result

•

Identity x x → x

• Composition x
f→ y

g→ z x → z

•

Associativity x
f→ y

g→ z
h→ w f ? (g ? h)→ (f ? g) ? h

coh comp (x : *) (y : *) (f : x -> y)
(z : *) (g : y -> z) :

x -> z

• Checking coherences
• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme

Examples
Operation Pasting scheme Result

•

Identity x x → x

•

Composition x
f→ y

g→ z x → z

• Associativity x
f→ y

g→ z
h→ w f ? (g ? h)→ (f ? g) ? h

coh assoc (x : *) (y : *) (f : x -> y)
(z : *) (g : y -> z)
(w : *) (h : z -> w) :

comp(x y f w (comp y z g w h)) ->
comp(x z (comp x y f z g) w h)

• Checking coherences
• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme
• Checking coherences

We add term constructor to ensure coherences correspond to
correct operations of weak ω-category theory.

Γ pasting scheme Γ ` u → v

Γ ` cohΓ,u,v : u → v
(+ extra conditions)

• Note: Genericity



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme
• Checking coherences
• Note: Genericity

Example



Terms: weak ω-categories
• Operations and axioms of categories are generated using
terms constructors

• Pasting scheme
• Coherence: operation of composing a pasting scheme
• Checking coherences
• Note: Genericity

Example

coh sq (x : *) (f : x -> x) : x -> x



Some metatheoretical principles

• Implicit arguments

Example
Operation Pasting scheme Result

Associativity x
f→ y

g→ z
h→ w f ? (g ? h)→ (f ? g) ? h

coh assoc (x : *) (y : *) (f : x -> y)
(z : *) (g : y -> z)
(w : *) (h : z -> w) :

comp(x y f w (comp y z g w h)) ->
comp(x z (comp x y f z g) w h)

• Non-primitive operations
• Lifting of operations



Some metatheoretical principles

• Implicit arguments

Example
Operation Pasting scheme Result

Associativity x
f→ y

g→ z
h→ w f ? (g ? h)→ (f ? g) ? h

coh assoc (x : *) (y : *) (f : x -> y)
(z : *) (g : y -> z)
(w : *) (h : z -> w) :

comp(f (comp g h)) -> comp((comp f g) h)

• Non-primitive operations
• Lifting of operations



Some metatheoretical principles

• Implicit arguments
• Non-primitive operations

Example (squaring an endomorphism)
coh sq (x : *) (f : x -> x) : x -> x

• Lifting of operations



Some metatheoretical principles

• Implicit arguments
• Non-primitive operations

Example (squaring an endomorphism)
coh sq (x : *) (f : x -> x) : x -> x
let sq (x : *) (f : x -> x) = comp f f

• Lifting of operations



Some metatheoretical principles

• Implicit arguments
• Non-primitive operations
• Lifting of operations

Example

coh id0 (x : *) : x -> x

coh id1 (x : *) (y : *) (f : x -> y): f -> f

coh id2 (x: *) (y : *) (f : x -> y) (g : x ->
y) (a : f -> g) : a -> a



Some metatheoretical principles

• Implicit arguments
• Non-primitive operations
• Lifting of operations

Solution
Declare only

coh id (x: *) : x -> x

and generate all the others on the fly



Outline



doubly monoidal ω-categories

Definition
A doubly monoidal ω-category is a weak ω-category with only
one object, and one 1-cell

In CaTT:

• No way to specify that there is only one of a kind

• Nevertheless, we can restrict ourselves to using only one
object and one 1-cell

x x

idx

idx

a



doubly monoidal ω-categories

Definition
A doubly monoidal ω-category is a weak ω-category with only
one object, and one 1-cell

In CaTT:

• No way to specify that there is only one of a kind

• Nevertheless, we can restrict ourselves to using only one
object and one 1-cell

x x

idx

idx

a



doubly monoidal ω-categories

Definition
A doubly monoidal ω-category is a weak ω-category with only
one object, and one 1-cell

In CaTT:

• No way to specify that there is only one of a kind

• Nevertheless, we can restrict ourselves to using only one
object and one 1-cell

x x

idx

idx

a



Definition of the braiding

· ·
a

b



Definition of the braiding

· · ·
a

b



Definition of the braiding

· · ·
b

a



Definition of the braiding

· ·
b

a



Definition of the braiding



Formalisation - First Plan

· ·
a

b
· ·

a

b

· · ·
a

b
· · ·

a

b



Formalisation - Attempt

· ·
a

b

· · ·
a

b



Formalisation Attempt

Translate these successive diagrams into terms of the theory

x x
a

b
x x x

a

b

Γ =(x : *) (a : id x -> id x) (b : id x -> id x)



Formalisation Attempt

Translate these successive diagrams into terms of the theory

x x
a

b
x x x

a

b

Γ =(x : *) (a : id x -> id x) (b : id x -> id x)



Formalisation Attempt

Translate these successive diagrams into terms of the theory

x x
a

b
x x x

a

b

Γ =(x : *) (a : id x -> id x) (b : id x -> id x)

comp a b



Formalisation Attempt

Translate these successive diagrams into terms of the theory

x x
a

b
x x x

a

b

Γ =(x : *) (a : id x -> id x) (b : id x -> id x)

comp a b comp (whiskR a (id x)) (whiskL (id x) b)



Formalisation Attempt

Translate these successive diagrams into terms of the theory

x x
a

b
x x x

a

b

Γ =(x : *) (a : id x -> id x) (b : id x -> id x)

comp a b comp (whiskR a (id x)) (whiskL (id x) b)



Formalisation Attempt - First step

comp a b comp (whiskR a (id x)) (whiskL (id x) b)



Formalisation Attempt - First step

a whiskR a (id x)

Idea
Handle separately a and b



Formalisation Attempt - First step

a whiskR a (id y)

To apply a coherence, we unfold into a generic position

(x : *) (y : *) (f : x -> y)
(g : x -> y) (a : f -> g)



Formalisation Attempt - First step

a whiskR a (id y)

Try a coherence

coh shiftL (x : *) (y : *) (f : x -> y)
(g : x -> y) (a : f -> g) :

a -> whiskR a (id y)



Formalisation Attempt - First step

a whiskR a (id y)

Result
This returns an error: the type of the result is ill-formed

a : f -> g

whiskR a (id y) : comp f (id y) -> comp g (id y)



Formalisation Attempt - First step

a comp3 ...

Solution
Modify the target of the arrow



Formalisation Attempt - First step

a comp3 ...

Solution
We now have a coherence

coh shiftL (x : *) (y : *) (f : x -> y)
(g : x -> y) (a : f -> g) :

a -> comp3 ...



Formalisation - First Plan

· ·
a

b
· ·

a

b

· · ·
a

b
· · ·

a

b



Formalisation - Plan

x x
a

b
x x

a

b

x

x x

x

a

b

x

x x

x
a

b

x x x
a

b
x x x

a
b



Formalisation - Core

x x
a

b
x x

a

b

x

x x

x

a

b

x

x x

x
a

b

x x x
a

b
x x x

a
b



Formalisation - Core
• Exchange law :

· · · · · ·

• This is a primitive operation of the theory
coh exch (x : *) (y : *) (f : x -> y) (g : x -> y)

(a : f -> g)
(z : *) (h : y -> z) (k : y -> z)

(b : h -> k) :
comp (whiskR a h) (whiskL g b) ->
comp (whiskL f b) (whiskR a k)



Outline



Inverse of the braiding

• The braiding has an obvious inverse

• Geometrically :

• Formally : The two definition have a very similar structure,
but some of the arguments need to be inverted.



Inverse of the braiding

• The braiding has an obvious inverse

• Geometrically :

· ·
a

b

• Formally : The two definition have a very similar structure,
but some of the arguments need to be inverted.



Inverse of the braiding

• The braiding has an obvious inverse

• Geometrically :

· · ·
b

a

• Formally : The two definition have a very similar structure,
but some of the arguments need to be inverted.



Inverse of the braiding

• The braiding has an obvious inverse

• Geometrically :

· · ·
a

b

• Formally : The two definition have a very similar structure,
but some of the arguments need to be inverted.



Inverse of the braiding

• The braiding has an obvious inverse

• Geometrically :

· ·
b

a

• Formally : The two definition have a very similar structure,
but some of the arguments need to be inverted.



Inverse of the braiding

• The braiding has an obvious inverse

• Geometrically :

• Formally : The two definition have a very similar structure,
but some of the arguments need to be inverted.



Inverse of the braiding

• The braiding has an obvious inverse

• Geometrically :

• Formally : The two definition have a very similar structure,
but some of the arguments need to be inverted.



Cancellation witness

• The braiding and its inverse cancel out

• Geometrically :
Reidemeister move of type II

'

• Formally :
Providing cancellation witnesses for all intermediate, we
can assemble them to build a cancellation for the complete
braiding.



Cancellation witness

• The braiding and its inverse cancel out

• Geometrically :
Reidemeister move of type II

'

• Formally :
Providing cancellation witnesses for all intermediate, we
can assemble them to build a cancellation for the complete
braiding.



Cancellation witness

• The braiding and its inverse cancel out

• Geometrically :
Reidemeister move of type II

'

• Formally :
Providing cancellation witnesses for all intermediate, we
can assemble them to build a cancellation for the complete
braiding.



Automation

• This example shows how inversion works

• It would be possible to generate inverses and cancellation
witnesses algorithmically (but it is more technical than it
looks, and has not been implemented yet)



Automation

• This example shows how inversion works

• It would be possible to generate inverses and cancellation
witnesses algorithmically (but it is more technical than it
looks, and has not been implemented yet)



Outline



triply monoidal ω-categories

Definition
A triply monoidal ω-category is a weak ω-category with only
one object, one 1-cell, and one 2-cell

In CaTT:

x x

idx

idx

V idid

Diagram:



triply monoidal ω-categories

Definition
A triply monoidal ω-category is a weak ω-category with only
one object, one 1-cell, and one 2-cell

In CaTT:

x x

idx

idx

V idid

Diagram:



triply monoidal ω-categories

Definition
A triply monoidal ω-category is a weak ω-category with only
one object, one 1-cell, and one 2-cell

In CaTT:

x x

idx

idx

V idid

Diagram:



Geometric idea
• The "suspended" braiding

animations/eh1-3D/eh01.png

• A "new" braiding

• Idea : exhibit a witness that these two braidings are in fact
equivalent


