Towards a fully formalised proof of the syllepsis in triply monoidal ω -categories

Samuel Mimram, Eric Finster, Thibaut Benjamin

Ecole Polytechnique

07/07/2018

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Goal

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Give a formalisation of the definition of syllepsis in triply monoidal ω -categories, using the type theory CaTT defined by Finster and Mimram The implementation we are using is available at https://github.com/ThiBen/catt

Motivations

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• First proof for which the prover is needed

expected, but not proven result

Motivations

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- First proof for which the prover is needed
- Extensive test of the implementation

various bugs could stay unnoticed on smaller projects

Motivations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- First proof for which the prover is needed
- Extensive test of the implementation
- Understanding of the practical use of CaTT

will guide the future developments

Outline

◆□ > < 個 > < E > < E > E 9 < 0</p>

Type: globular sets

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• To start with, we have a type theory with two type constructors

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash x : A \qquad \Gamma \vdash y : A}{\Gamma \vdash x \xrightarrow{\rightarrow} y}$$

• Contexts of this theory describe globular sets in the following sense

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Operations and axioms of categories are generated using terms constructors

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme

Definition

Pasting scheme are the globular sets that are in a "generic composable position"

Example

a pasting scheme

not a pasting scheme

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme

Examples

Operation	Pasting scheme	Result
Identity	X	$x \rightarrow x$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme

Examples

Operation	Pasting scheme	Result	
Identity	X	$x \rightarrow x$	
Composition	$x \xrightarrow{f} y \xrightarrow{g} z$	$x \rightarrow z$	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme

Examples		
Operation	Pasting scheme	Result
Identity	X	$x \rightarrow x$
Composition	$x \xrightarrow{f} y \xrightarrow{g} z$	$x \rightarrow z$
Associativity	$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$	$f \star (g \star h) o (f \star g) \star h$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme

Operation	Pasting scheme	Result
 Identity 	X	$x \rightarrow x$
Composition	$x \xrightarrow{f} y \xrightarrow{g} z$	$x \rightarrow z$
Associativity	$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$	$f \star (g \star h) \to (f \star g) \star h$
coh id (x	: *) : x -> x	

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme

Exampl	es
--------	----

Operation	Pasting scheme	Result
Identity	X	$x \rightarrow x$
Composition	$x \xrightarrow{f} y \xrightarrow{g} z$	$x \rightarrow z$
Associativity	$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$	$f \star (g \star h) \rightarrow (f \star g) \star h$
coh comp	(x : *) (y : *)	(f : x -> y)
	(z : *)	(g : y -> z) :
x ->	Z	

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme

Examp	bles
-------	------

Operation	Pasting scheme	Result
Identity	X	$x \rightarrow x$
Composition	$x \xrightarrow{f} y \xrightarrow{g} z$	$x \rightarrow z$
• Associativity	$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$	$f \star (g \star h) \to (f \star g) \star h$
coh assoc	(x : *) (y :	*) (f : x -> y)
	(z :	*) (g : y -> z)
	(w :	*) (h : z -> w) :
comp(:	x y f w (comp	yzgwh)) ->
comp(:	x z (comp x y	fzg)wh)

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme
- Checking coherences
 We add term constructor to ensure coherences correspond to correct operations of weak ω-category theory.

 $\frac{\Gamma \text{ pasting scheme } \Gamma \vdash u \to v}{\Gamma \vdash \operatorname{coh}_{\Gamma, u, v} : u \to v} \qquad (+ \text{ extr}$

(+ extra conditions)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme
- Checking coherences
- Note: Genericity

Example

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Operations and axioms of categories are generated using terms constructors
- Pasting scheme
- Coherence: operation of composing a pasting scheme
- Checking coherences
- Note: Genericity

coh sq (x : *) (f : x -> x) : x -> x

Implicit arguments

Example
OperationPasting schemeResultAssociativity $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$ $f \star (g \star h) \rightarrow (f \star g) \star h$ coh assoc(x : *)(y : *) $(f : x \rightarrow y)$ (z : *) $(g : y \rightarrow z)$ (w : *) $(h : z \rightarrow w)$ $comp(x y f w (comp y z g w h)) \rightarrow$ comp(x z (comp x y f z g) w h)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Implicit arguments

Example
OperationPasting schemeResultAssociativity $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$ $f \star (g \star h) \to (f \star g) \star h$ coh assoc(x : *)(y : *) $(f : x \to y)$ (z : *) $(g : y \to z)$ (w : *) $(h : z \to w)$ comp(f (comp g h)) \rightarrow comp((comp f g) h)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Implicit arguments
- Non-primitive operations

Example (squaring an endomorphism) coh sq (x : *) (f : x -> x) : x -> x

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Implicit arguments
- Non-primitive operations

Example (squaring an endomorphism) $\cosh sq (x : *) (f : x \rightarrow x) : x \rightarrow x$ $let sq (x : *) (f : x \rightarrow x) = comp f f$

- Implicit arguments
- Non-primitive operations
- Lifting of operations

Example

coh id0
$$(x : *) : x \rightarrow x$$

coh id1 $(x : *) (y : *) (f : x \rightarrow y): f \rightarrow f$
coh id2 $(x: *) (y : *) (f : x \rightarrow y) (g : x \rightarrow y)$
 $(a : f \rightarrow g) : a \rightarrow a$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Implicit arguments
- Non-primitive operations
- Lifting of operations

Solution Declare only

coh id $(x: *) : x \rightarrow x$ and generate all the others on the fly

Outline

◆□ > < 個 > < E > < E > E 9 < 0</p>

doubly monoidal ω -categories

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

Definition

A doubly monoidal $\omega\text{-category}$ is a weak $\omega\text{-category}$ with only one object, and one 1-cell

doubly monoidal $\omega\text{-}\mathsf{categories}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition

A doubly monoidal $\omega\text{-category}$ is a weak $\omega\text{-category}$ with only one object, and one 1-cell

In CaTT:

• No way to specify that there is only one of a kind

doubly monoidal $\omega\text{-categories}$

Definition

A doubly monoidal $\omega\text{-category}$ is a weak $\omega\text{-category}$ with only one object, and one 1-cell

In CaTT:

- No way to specify that there is only one of a kind
- Nevertheless, we can restrict ourselves to using only one object and one 1-cell

ション ふゆ く 山 マ チャット しょうくしゃ

Formalisation - First Plan

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Translate these successive diagrams into terms of the theory

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Translate these successive diagrams into terms of the theory

 $\Gamma = (x : *)$ (a : id x -> id x) (b : id x -> id x)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Translate these successive diagrams into terms of the theory

 $\Gamma = (x : *)$ (a : id x -> id x) (b : id x -> id x)

comp a b

Translate these successive diagrams into terms of the theory

 $\Gamma = (x : *)$ (a : id x -> id x) (b : id x -> id x)

comp a b comp (whiskR a (id x)) (whiskL (id x) b)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Translate these successive diagrams into terms of the theory

 $\Gamma = (x : *)$ (a : id x -> id x) (b : id x -> id x)

 $\mathsf{comp a b} \Longrightarrow \mathsf{comp (whiskR a (id x)) (whiskL (id x) b)}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Formalisation Attempt - First step

comp a b \implies comp (whiskR a (id x)) (whiskL (id x) b)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ldea Handle separately a and b

To apply a coherence, we unfold into a generic position

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Formalisation Attempt - First step

Try a coherence

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Result

This returns an error: the type of the result is ill-formed

whiskR a (id y) : comp f (id y) -> comp g (id y)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Formalisation Attempt - First step

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Solution

Modify the target of the arrow

Formalisation Attempt - First step

Solution

We now have a coherence

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Formalisation - First Plan

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Formalisation - Plan

Formalisation - Core

Formalisation - Core

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Exchange law :

This is a primitive operation of the theory coh exch (x : *) (y : *) (f : x -> y) (g : x -> y) (a : f -> g) (z : *) (h : y -> z) (k : y -> z) (b : h -> k) : comp (whiskR a h) (whiskL g b) -> comp (whiskL f b) (whiskR a k)

Outline

◆□ > < 個 > < E > < E > E 9 < 0</p>

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• The braiding has an obvious inverse

- The braiding has an obvious inverse
- Geometrically :

- The braiding has an obvious inverse
- Geometrically :

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- The braiding has an obvious inverse
- Geometrically :

- The braiding has an obvious inverse
- Geometrically :

- The braiding has an obvious inverse
- Geometrically :

- The braiding has an obvious inverse
- Geometrically :

Cancellation witness

• The braiding and its inverse cancel out

Cancellation witness

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

• The braiding and its inverse cancel out

Cancellation witness

• The braiding and its inverse cancel out

• Formally :

Providing cancellation witnesses for all intermediate, we can assemble them to build a cancellation for the complete braiding.

Automation

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• This example shows how inversion works

Automation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- This example shows how inversion works
- It would be possible to generate inverses and cancellation witnesses algorithmically (but it is more technical than it looks, and has not been implemented yet)

Outline

◆□ > < 個 > < E > < E > E 9 < 0</p>

triply monoidal ω -categories

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A triply monoidal $\omega\text{-category}$ is a weak $\omega\text{-category}$ with only one object, one 1-cell, and one 2-cell

triply monoidal ω -categories

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

A triply monoidal $\omega\text{-category}$ is a weak $\omega\text{-category}$ with only one object, one 1-cell, and one 2-cell

In CaTT:

triply monoidal ω -categories

Definition

A triply monoidal $\omega\text{-}category$ is a weak $\omega\text{-}category$ with only one object, one 1-cell, and one 2-cell

In CaTT:

Diagram:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Geometric idea

• The "suspended" braiding

animations/eh1-3D/eh01.png