
Monoidal weak ω-categories as models of
a type theory

Thibaut Benjamin∗

LIX, Ecole Polytechnique
1 rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France

Abstract

Weak ω-categories are notoriously difficult to define because of the very
intricate nature of their axioms. Various approaches have been explored,
based on different shapes given to the cells. Interestingly, homotopy type
theory encompasses a definition of weak ω-groupoid in a globular set-
ting, since every type carries such a structure. Starting from this remark,
Brunerie could extract this definition of globular weak ω-groupoids, formu-
lated as a type theory. By refining its rules, Finster and Mimram have then
defined a type theory called CaTT, whose models are weak ω-categories.
Here, we generalize this approach to monoidal weak ω-categories. Based
on the principle that they should be equivalent to weak ω-categories with
only one 0-cell, we are able to derive a type theory MCaTT whose models
are monoidal weak ω-categories. This requires changing the rules of the
theory in order to encode the information carried by the unique 0-cell.
The correctness of the resulting type theory is shown by defining a pair of
translations between our type theory MCaTT and the type theory CaTT.
Our main contribution is to show that these translations relate the models
of our type theory to the models of the type theory CaTT consisting of
ω-categories with only one 0-cell, by analyzing in details how the notion
of models interact with the structural rules of both type theories.

Weak ω-categories are algebraic structures occurring naturally in modern
algebraic topology and type theory. They consist of collections of cells in every
dimension, which can be composed in various ways. The main difficulty in prop-
erly establishing a definition for those is due to the fact that the usual coherence
axioms imposed on composition, such as associativity, are here relaxed and only
supposed up to invertible higher cells, that we call witnesses for these axioms.
Moreover, these witnesses themselves admit compositions, which satisfy axioms
up to new witnesses, and so on, making the compositions and their coherence
axioms intricate. There have been different approaches to propose a definition of
weak ω-categories, which are summed up in a couple of surveys [19, 12]. These

∗Electronic address: thibaut.benjamin@polytechnique.edu

1

approaches are based on various shapes, such as simplicial sets or opetopic sets.
In this article, we are interested in approaches based on globular sets. Examples
of such approaches can be found in the work of Batanin [5] and Leinster [20], re-
lying on the structure of globular operad. Independently Maltsioniotis proposed
an alternative approach [22], inspired by a definition of weak ω-groupoid (i.e.,
weak ω-categories whose all cells are invertible) proposed by Grothendieck [18],
and which is based on presheaves preserving some structure on a well-chosen
category. The two approaches have been proved equivalent by Ara [2].

Type theoretical approach. An important observation which came along
with the development of homotopy type theory [24] is the fact that the types in
Martin-Löf type theory, and in homotopy type theory carry a structure of weak
ω-groupoid, where the higher cells are given by identity types [21, 25, 1]. This
allowed Brunerie to extract a minimal set of rules from homotopy type theory
for generating the weak ω-categories [10], that he could prove to be equivalent
to the definition of Grothendieck. Recently, Finster and Mimram proposed
a generalization of Brunerie’s type theory to weak ω-categories [15], parallel to
the generalization Maltsiniotis proposed from Grothendieck definition. The type
theory they introduced is called CaTT, and has been proved to be equivalent to
the definition of Maltsiniotis [8].

Monoidal categories. In this article, we are interested in monoidal weak ω-
categories. These are categories equipped with a tensor product allowing new
ways to compose cells of every dimension. In particular, one cannot compose
the cells of dimension 0 in weak ω-categories, but one can compose them in
monoidal weak ω-categories. Moreover these new compositions are required to
satisfy axioms like associativity, but since it happens in a weak setup, these
axioms are again relaxed versions with witnesses in higher dimensions. This
can be seen as a categorification of the notion of monoid. Our goal here is to
provide a variant of the CaTT type theory in order to describe monoidal weak
ω-categories.

As noticed by Baez and Dolan [4, 3], monoidal weak ω-categories should be
equivalent to weak ω-categories with only one 0-cell. In this correspondence,
there is a shift in dimension: the 0-cells of the monoidal ω-category are the 1-
cells of the ω-category with one 0-cell, and so on. The monoidal tensor product
becomes the composition of arrows of the ω-category, and all its coherences are
exactly those satisfied by these arrows in the ω-category.

Taking this correspondence as a starting point, we work out an explicit type
theory MCaTT whose models are monoidal categories, by describing CaTT with
the extra restriction that there should be only one 0-cell. To achieve this, we rely
on the type theory CaTT and use its constituent to express the rules of the theory
MCaTT We then define a pair of translations back and forth between CaTT and
MCaTT, and use the interaction of these translations with the structure of the
type theory to show that our proposed definition satisfies the correspondence
we started with.

2

Plan of the paper. In section 1, we introduce the type theory CaTT along
with the general tools we use to study type theories and their models. Then in
section 2 we define the type theory MCaTT along with a pair of translations be-
tween the theories CaTT and MCaTT. We show that these translation exhibit a
coreflective adjunction between the syntactic categories associated to the theory
that lifts as an equivalence between a localization of the models of CaTT and
the models of MCaTT.

The author would like to thank Samuel Mimram and Eric Finster for their
valuable discussions regarding the work presented in this article, as well as the
reviewers for their helpful comments.

1 Type theory for weak ω-categories
This section is dedicated to the type theory CaTT introduced by Finster and
Mimram [15] to describe weak ω-categories. The account we provide is intro-
ductory, and we refer the reader to [8] for a more in-depth presentation. We
first define our setting for type theory, and introduce a type theory that de-
scribes globular sets. Then we extend this theory with extra term constructors,
to obtain the theory CaTT.

1.1 Type theories: notations and categorical semantics
We establish the terminology and conventions that are used throughout this ar-
ticle to manipulate type theories. Note that our method consists in formulating
a type theory to describe a structure, as opposed to developing said structure
internally to Martin-Löf type theory.

Expressions. A type theory manipulates various kind of objects, that we
present here along with the convention we use for naming them.

• variables are elements of a given infinite countable set of variables, we
denote them x, y, z, . . .,

• terms, which are built out of variables and constructors, we denote them
t, u, . . .,

• types, which are built out of terms and constructors, we denote them
A,B, . . .,

• contexts are supported by association lists of the form x : A, they are
denoted Γ,∆, . . .,

• substitutions are supported by lists of mappings of the form x 7→ t where
x is a variable and t a term, we denote them γ, δ,

The constructors for terms and type depend on the theory we consider, and we
introduce them individually. These all come with associated set of variables,

3

Var and that is the set of variables needed to build it out. We denote Var(t : A)
for the union of Var(t) and Var(A). For contexts and substitutions, we always
have the following formulas

Var(∅) = ∅ Var(Γ, x : A) = Var(Γ) ∪ {x} Var(〈〉) = ∅ Var(〈γ, x 7→ t〉) = Var(γ) ∪Var(t)

Action of substitutions. We define the action of a substitution γ on a type
A (resp. on a term t) denoted A[γ] (resp. t[γ]). These are defined separately on
each theory, but share the variable case in common:

x[〈〉] = x x[〈γ, y 7→ t〉] =

{
t If x = y
x[γ] Otherwise

This action provides a composition of substitutions given inductively by

〈〉 ◦ δ = 〈〉 〈γ, x 7→ t〉 ◦ δ = 〈γ ◦ δ, x 7→ t[δ]〉

Judgments. There are four kinds of judgments that are commons to all of
our type theories, they express the well-definedness of the previously introduced
objects:

Γ ` Γ is a valid context Γ ` t : A t is a valid term of type A in Γ
Γ ` A A is a valid type in Γ ∆ ` γ : Γ γ is a valid substitution from ∆ to Γ

In order to distinguish, we sometimes refer to the raw syntax, or to expressions
for a syntactic entity which is not assumed to satisfy any of the above judgment.

Basic rules. The following rules are common to all the type theories that we
consider

∅ `
(ec)

Γ ` A
Γ, x : A `

(ce)

Γ `
Γ ` 〈〉 : ∅

(es)
∆ ` γ : Γ Γ ` A ∆ ` t : A[γ]

∆ ` 〈γ, x 7→ t〉 : Γ, x : A
(se)

Γ ` (x : A) ∈ Γ

Γ ` x : A
(var)

Where in the rules (ce) and (se) we assume that x /∈ Var(Γ).

Syntactic category. We admit that for all the theories that we consider,
these the action of substitution makes the following rules admissible

∆ ` γ : Γ Γ ` A
∆ ` A[γ]

∆ ` γ : Γ ∆ ` t : A

Γ ` t[γ] : A[γ]

∆ ` γ : Γ Λ ` δ : ∆

Λ ` γ ◦ δ : Γ

and that the action of substitutions is compatible with the composition, thus
making the composition associative

A[γ][δ] = A[γ ◦ δ] t[γ][δ] = t[γ ◦ δ] γ ◦ (δ ◦ δ) = (γ ◦ δ) ◦ δ

4

Moreover, we can define an identity substitution, defined on a context Γ = (xi : Ai)i∈I
by idΓ = 〈xi 7→ xi〉i∈I . One can show that whenever Γ ` is derivable, then so
is Γ ` idΓ : Γ and that whenever ∆ ` γ : Γ, Γ ` A and Γ ` t : A hold, the
following equalities are satisfied.

A[idΓ] = A t[idΓ] = t γ ◦ idΓ = γ id∆ ◦γ = γ

Hence one can construct a syntactic category ST associated to a type theory T,
whose objects are the contexts of the type theory T, and whose morphisms are
the substitutions.

Properties. We admit that all our type theories also satisfy the following
properties, that one can prove by induction on the derivation trees. We refer
the reader to a formalization in Agda1 where we define prove these properties
for some of the theories.

Proposition 1. In all the theories we consider, the following rules are admis-
sible

Γ ` A
Γ `

Γ ` t : A

Γ ` A
∆ ` γ : Γ

Γ `
∆ ` γ : Γ

∆ `
Γ, x : A ` Γ ` B

Γ, x : A ` B
Γ, x : A ` Γ ` t : A

Γ, x : A ` t : B

∆, x : A ` ∆ ` γ : Γ

∆, x : A ` γ : Γ

Moreover, for every derivable judgment Γ ` A (resp. Γ ` t : A), we have
Var(A) ⊂ Var(Γ) (resp. Var(t) ⊂ Var(Γ)). For every derivable judgment ∆ ` γ : Γ,
we have Var(γ) ⊂ Var(∆), and writing γ = 〈xi 7→ ti〉0≤i≤n and Γ = (yi : Ai)0≤i≤m,
we have n = m and for all i, xi = yi.

Category with families. We use the formalism of categories with families,
introduced by Dybjer [13] as our categorical axiomatization of dependent type
theories. Denote Fam the category of families, where objects are families of sets
(Ai)i∈I , and morphisms f : (Ai)i∈I → (Bj)j∈J are pairs consisting of a function
f : I → J and a family of functions (fi : Ai → Bf(i))i∈I . Given a category C
equipped with a functor T : Cop → Fam. Given an object Γ of C, its image
will be denoted

TΓ =
(
TmΓ

A

)
A∈TyΓ

i.e., TyΓ is the index set and TmΓ
A is an element of the family. By analogy with

a type theory, for a morphism γ : ∆ → Γ an element A ∈ TyΓ and an element
t ∈ TmΓ

A, we write A[γ] = Tγ(A) the image of A in Ty∆, and t[γ] = TAγ(t)
the image of t in Tm∆

A[γ]. With those notations, the functoriality of T can be
written as, for all composable morphisms γ, δ in C,

A[γ ◦ δ] = A[γ][δ] A[id] = A t[γ ◦ δ] = t[γ][δ] t[id] = t

1https://github.com/thibautbenjamin/catt-formalization

5

https://github.com/thibautbenjamin/catt-formalization

A category with families (or CwF) consists of a category C equipped with a
functor as above T : Cop → Fam, such that C has a terminal object, denoted
∅, and that there is a context comprehension operation: given a context Γ
and type A ∈ TyΓ, there is a context (Γ, A), together with a projection mor-
phism π : (Γ, A) → Γ and a term p ∈ Tm

(Γ,A)
A[π] , such that for every morphism

σ : ∆→ Γ in C together with a term t ∈ Tm∆
A[σ], there exists a unique morphism

〈σ, t〉 : ∆→ (Γ, A) such that p[〈σ, t〉] = t:

(Γ, A)

∆ Γ

π
〈σ,t〉

σ

We call an arrow of the form π : (Γ, A)→ Γ a display map. The following result
is well-known and allow for giving structure to the syntactic category of a type
theory.

Proposition 2. The syntactic category of a type theory is endowed with a struc-
ture of category with families. For every context Γ, TyΓ is the set of derivable
types in Γ and TmΓ

A is the set of derivable terms of type A in Γ.

Models of a category with families. The structure of category with fami-
lies enforces some compatibility between context comprehension and the action
of morphisms on the type.

Lemma 1. In a category with families C, for every morphism f : ∆→ Γ in C
and A ∈ TyΓ, the following square is a pullback

(∆, A[f]) (Γ, A)

∆ Γ

π′

〈f◦π′,p′〉

π

f

where π′ : (∆, A[f]) → ∆ and p′ ∈ Tm
(∆,A[f])
A[f][π′] are obtained by context compre-

hension.

This is essentially a reformulation of the universal property of the context
comprehension, and was observed by Dybjer [13]. The entire formalism of cate-
gories with families can be seen as an axiomatization of a category with a split
choice of pullbacks along the display maps.

Definition 1 (Models of a category with families). Consider a category with
families C, we say that a functor F : C → Set is a (set-theoretic) model of C if
it sends all the pullbacks along display maps in C onto pullbacks in Set.

6

Morphisms of category with families. We call a morphism of categories
with families a functor that preserves the terminal object and the context com-
prehension on the nose. Since the pullbacks are computed from this structure,
the morphisms of categories with families preserve the pullbacks along display
maps.

1.2 Globular sets
Globular weak ω-categories are supported by globular sets, which are presheaves
over the category of globes G, generated by 0 1 2 · · ·

s

t

s

t

s

t

(with ts = ss and st = tt). We denote GSet = Ĝ the category of globu-
lar sets, and in this category, we call the n-dimensional disk the representable
object represented by n and denote it Dn.

Type theory for globular sets. Following [15] we first give a type theoretic
description of the theory G describing globular sets. This theory has two type
constructors ? and→ and no term constructor. Intuitively, ? is the types of the
objects of the set, and given a type A and two terms t, u, the type t −→

A
u is the

type of higher cells from t to u. Define the variables of a type, as well as the
action of substitutions as follows

Var(?) = ∅ Var(t −→
A
u) = Var(A) ∪Var(t) ∪Var(u) ?[γ] = ? (t −→

A
u)[γ] = t[γ] −−−→

A[γ]
u[γ]

These constructors are subject to the following introduction rules

Γ `
Γ ` ?

(?-intro)
Γ ` t : A Γ ` u : A

Γ ` t −→
A
u

(→-intro)

Since there are no term constructors, the only terms in the theory G are vari-
ables. A self contained description of this theory is provided in Appendix A.1.

Semantics of the theory G. Here, we present results about the theory G
without proofs; a detailed presentation can be found in [15, 8]. The following
result characterizes the syntactic category of G and is illustrated in Fig. 1.

Proposition 3 ([15, Prop. 11],[8, Th. 16]). The syntactic category of the theory
G is equivalent to the opposite of the category of finite globular sets.

Proposition 4 ([15, Prop 13],[8, Th. 22]). The category of models of G is
equivalent to the category of globular sets.

Disk contexts. The category of finite globular sets contains in particular
the representable objects Dn, we also denote Dn, and call disk contexts, the
corresponding contexts in G given by Proposition 3. In low dimensions, they
are given (up to renaming of their variables), by

D0 = (x : ?) D1 = (x : ?, y : ?, f : x→ y) D2 = (x : ?, y : ?, f : x→ y, g : x→ y, α : f → g)

7

x : ?, y : ?, z : ?, f1 : x→ y, f2 : x→ y,
g : x→ z, h : y → y, α : f1 → f2

x y

z

f1

f2

⇓α

h

g

Figure 1: A context and its corresponding globular set

1.3 The type theory CaTT
In order to axiomatize the weak ω-category structure, we add new terms, that we
call operations and coherences. This can be done by adding term constructors
to the theory G. To express the rules for these constructors, we introduce the
ps-contexts, which are a particular class of ps-contexts.

Ps-contexts. We define ps-contexts to be a particular class of contexts in
the theory G that we describe using rules of a type-theoretic flavor. We thus
introduce two new judgment kinds

Γ `ps the context Γ is a ps-context
Γ `ps x : A Γ is a partial ps-context with dangling variable x

The second judgment is just a convenient auxiliary, where the dangling variable
indicates the unique variable on which one is allowed to glue a cell at the next
step. These two judgments are subject to the following rules

(x : ?) `ps x : ?
(pss)

Γ `ps f : x −→
A
y

Γ `ps y : A
(psd)

Γ `ps x : A

Γ, y : A, f : x −→
A
y `ps f : x −→

A
y

(pse)
Γ `ps x : ?

Γ `ps
(ps)

A ps-context Γ comes equipped with notion of i-source ∂−(i)Γ and i-target
∂+(i)Γ for every number i ∈ N, defined inductively on its structure:

∂−(i)(x : ?) = (x : ?) ∂−i (Γ, y : A, f : x→ y) =

{
∂−i Γ if dimA ≥ i
∂−i Γ, y : A, f : x→ y otherwise

∂+(i)(x : ?) = (x : ?) ∂+
i (Γ, y : A, f : x→ y) =


∂+
i Γ if dimA > i

drop(∂+
i Γ), y : A if dimA = i

∂+
i Γ, y : A, f : x→ y otherwise

where drop(Γ) is the context Γ with its last variable removed, i.e., drop(Γ, x : A) = Γ.
We write ∂±Γ = ∂±dim Γ−1. With these conventions, ∂−(x : ?) and ∂+(x : ?) are
not defined.
Remark 1. Under the correspondence of Proposition 3, the ps-contexts corre-
spond to a class of finite globular sets called pasting schemes, which can be
described in several different way and play a significant role in weak ω-category

8

theory [5, 20, 22]. Intuitively they are the globular sets that can be completely
composed in an essentially unique way, and they are used to index all the op-
erations. More details about their relation to ps-contexts can be found in [8,
Th.73].

Syntax of the theory CaTT. The syntax is obtained by adding two term
constructors op and coh, do the theory G. A term expression in this theory is
thus defined to be either a variable or of the form op∆,A[δ] or coh∆,A[δ], where
in both the latter cases ∆ is a context, A is a type and δ is a substitution.
To simplify the notations, we denote constr to be either op or coh.The set of
variables and the application of substitutions are defined by the formulas

Var(constrΓ,A[γ]) = Var(γ) constrΓ,A[γ][δ] = constrΓ,A[γ ◦ δ]

Side conditions. The introduction rules for the term constructors op and
coh have to verify some side conditions regarding the variables that are used in
the type that we derive. Intuitively the introduction rule for the constructor
op creates witnesses for operations, for instance the composition, or whiskering,
which a priori have no reason to be invertible, whereas the introduction rule for
the constructor coh creates witnesses for coherences, as for instance the associa-
tors, which are always weakly invertible. In order to simplify the notations, we
encapsulate the requirements for these rules along with their side conditions in
new judgments Γ `op A and Γ `coh A that we interpret as stating that A defines
a valid operation (resp. coherence) in the context Γ. These two judgments are
subject to the following derivation rules, which express all the requirements for
the introduction rules of the constructors op and coh

Γ `ps ∂−(Γ) ` t : A ∂+(Γ) ` u : A

Γ `op t −→
A
u

{
Var(t : A) = Var(∂−(Γ))
Var(u : A) = Var(∂+(Γ))

Γ `ps Γ ` t : A Γ ` u : A

Γ `coh A

{
Var(t : A) = Var(Γ)
Var(u : A) = Var(Γ)

Note that whenever Γ `op A is derivable, then a top-dimensional variable of Γ
cannot appear in A, whereas whenever Γ `coh A is derivable, a top-dimensional
variable of Γ has to appear in A, hence these two rules are mutually exclusive.

Operations and coherences. We can now give the introduction rules for
the new term constructors coh and op.

Γ `op A ∆ ` γ : Γ

∆ ` opΓ,A[γ] : A[γ]
(op-intro)

Γ `coh A ∆ ` γ : Γ

∆ ` cohΓ,A[γ] : A[γ]
(coh-intro)

The resulting type theory obtained by adding these rules is called CaTT. We
present all the rules of the type theory CaTT together in Appendix A.2.

9

Interpretation. The ps-contexts intuitively represent all the context in which
there ought to be an essentially unique definition (in a weak situation, they
have a contractible set worth of composition). The rule (op-intro) enforces a
composition to exist for every ps-context, while the rule (coh-intro) enforces
that any two composition of a ps-context are related, together, they provide a
directed formulation of the idea of contractibility. Note that our formulation
of the rule (coh-intro) is slightly different than the one introduced by Finster
and Mimram [15]. Actually the two can be proven equivalent, but the proof is
surprisingly involved [6, Coro. 103].

Examples. We give a few examples of derivations in this system illustrating
how it describes weak ω-categories. This shows the introduction of a new oper-
ation and a new coherence, and emphasizes the role of the substitutions taken
as their arguments.

• Composition: In CaTT one can use an operation to derive a witness for
composition of 1-cells. Start by considering the context Γcomp = (x : ?, y : ?, f : x→ y, z : ?, g : y → z).
One can check that Γcomp `ps, and compute its source ∂−(Γcomp) = (x : ?)
and target ∂+(Γcomp) = (z : ?). Thus, the judgment Γcomp `op x → z is
derivable. Now considering with two terms v, w in a context Γ such that
Γ ` v : u→ u′ and Γ ` w : u′ → u′′ (i.e., two composable 1-cells u and v),
we define the substitution γ = 〈x 7→ u, y 7→ u′, f 7→ v, z 7→ u′′, g 7→ w〉.
The judgment Γ ` γ : Γcomp is then derivable, thus so it Γ ` opΓcomp,x→z

[γ] : u→ u′′.
We denote this term with the simpler and more usual notation Γ ` comp v w : u→ u′′.

• Associativity: Similarly, one can define the context

Γassoc = (x : ?, y : ?, f : x→ y, z : ?, g : y → z, w : ?, h : z → w)

and check that Γassoc `ps, and Γassoc `coh comp (comp f g) h→ comp f (comp g h)
are both derivable. Whenever a context Γ defines three terms u, v, w that
are composable 1-cells, the rule (coh-intro) provides a witness for the
associativity of their compositions, denoted

Γ ` assoc u v w : comp (comp u v) w → comp u (comp v w)

Models. For the purpose of this article, we define the category of weak ω-
categories to be the category of models of CaTT, and we refer the reader to [8]
for a formal exploration of how they relate to other known definitions of weak
ω-categories. We can however explain informally why this definition is sensible:
Considering a model F : SCaTT → Set, we define its set of objects to be F (D0),
and given two objects x, y ∈ F (D0), the set of 1-cells between x and y in F
to be HomF (x, y) =

{
f ∈ F (D1), F (s)(f) = x, F (t)(f) = y

}
where D1 ` s : D0

is the source substitution and D1 ` t : D0 is the target substitution. Two 1-
cells f ∈ HomF (x, y) and g ∈ HomF (y, z) define a unique element of F (Γcomp).
Then, the constructor comp defines a substitution Γcomp → D1, which induces the
element of F (D1) corresponding to the composition of f and g. This observation
can be generalized, so that all derivable terms correspond to additional algebraic
structure on the globular set induced by F .

10

Syntactic category. We have seen that the category Sop
G consists in the finite

globular sets, which are also the finitely generated ones since the representable
are finite. Similarly the category Sop

CaTT can be conceived as the full subcategory
of Mod (SCaTT) whose objects are the computads with finitely many generators
for the weak ω-category monad. Making this statement precise requires adapt-
ing the notion of computad [23, 11] to this case, or working with a monadic
formulation of the theory such as Leinster’s [20]. This formulation is equvalent
to the Grothendieck-Maltsiniotis definition, pas proved by Ara [2]. We leave
the details about these computads for further work, but still mention it here in
order to draw the connection with the Gabriel-Ulmer duality [17].

2 The type theory MCaTT for monoidal weak ω-
category

We now present a new type theory MCaTT, which is an original contribution
of this article, and which aims at describing monoidal weak ω-categories. The
main intuition behind this definition is to start from the idea that a monoidal
weak ω-category is a weak ω-category with a single object, and enforce this
constraint on the theory CaTT. This induces a shift in dimension, so we refer
to this new unique object as being of “dimension −1”, in such a way that the
cells of dimension 0 of the monoidal categories really are the objects.

The subcategory of context with one object. A natural candidate for
the syntactic category of the theory of weak ω-categories with one object is
the full subcategory of SCaTT whose objects are the contexts containing exactly
one cell of type ?. We denote this category SCaTT,•. It is not clear however
that this category can be equipped with a structure of category with families.
We introduce the theory MCaTT, and prove later that its syntactic category
is equivalent to SCaTT,•. This answers the above question, by constructing an
actual theory presenting SCaTT,•.

2.1 Globular sets with a unit type
We first define a variant of the type theory G, that we call G1, in order to
handle the dimension shift that happens.

Unit type. The type theory G1 is obtained from the theory G by formally
replacing the type ? by a unit type that we denote 1, together with a constant
that we denote (), which represent a term of this unit type. We keep the
constructor →. These new constructors have the following set of variables and
action under substitutions

Var(1) = ∅ Var(()) = ∅ 1[γ] = 1 ()[γ] = ()

11

The type introduction rules for the theory G1 are the following

Γ `
Γ ` 1

(1-intro)
Γ `

Γ ` () : 1
(()-intro)

Γ ` A Γ ` t : A Γ ` u : A

Γ ` t −→
A
u

(→-intro)

We also add a computation rule to this theory, that postulates a new definitional
equality. We use the symbol ≡ to denote such definitional equalities. We require
the two following rules, so that typing respects definitional equality and that 1
is a unit type.

Γ ` t : A Γ ` A ≡ B
Γ ` t : B

Γ ` x : 1

Γ ` x ≡ () : 1
(η1)

We refer the reader to Appendix A.3 for a summary of all the rules of the
theory

Theories with definitional equalities The addition of definitional equality
complicates the theory quite substantially in general. A slight technical problem
is that the rule (η1) makes the set of variables of a term not invariant. This is
easily solved since we do not use this set in the presence of the unit type. A more
profound issue is that one needs to account for this equality in the definition
of the syntactic category. This is why we now take the set of objects to be the
contexts up to definitional equality, and the morphisms to be substitutions up
to definitional equality. We also consider the set of terms and types associated
to a context to be up to definitional equality. The last difficulty is that adding
definitional equality may break the decidability of type checking. We admit
that in our case, we can actually define a normal form by rewriting any term
Γ ` t : 1 into the term (). This ensures that the type checking is decidable.
From now on, we always implicitly normalize all the expression we consider and
thus eliminate all the difficulties due to definitional equality.

Notations for mixing theories. When it is ambiguous, we write `T for
judgments that are derivable in the type theory T . In order to simplify the
formulation, we allow for rules that combine judgments coming from different
theory, in particular, we may say for example that any of the following rule is
admissible to express the fact that we can construct a derivation of the lower
judgment in the theory T ′ from a derivation of the upper judgment in the theory
T .

Γ `T
Γ′ `T ′

Γ `T A
Γ′ `T ′ A′

Γ `T t : A

Γ′ `T ′ t′ : A′
∆ `T γ : Γ

∆′ `T ′ γ′ : Γ′

Dimension and type of terms. We define the dimension of a type in the
theoryG1 by induction: dim1 = −2 and dim t −→

A
u = dimA+1. The dimension

of a term Γ ` t : A is dim t = 1 + dimA. Note that for every context Γ, there is
only ever one type of dimension −1 that is in normal form, the type Γ ` () −→

1
(),

12

we denote this type ? by analogy with the theory G. When we define operations
acting on G1 we always ensure that they respect the definitional equality by
defining them only in normal form. That means that in practice, we may treat
? as a separate case if needed, keeping in mind that it is simply a short form
for () −→

1
().

Semantics. We now show that the semantics of the theory G1 is the same as
the semantics of the theory G.

Lemma 2. The context (x : 1) is terminal in the category SG1

Proof. For any context Γ we always have the substitution Γ ` 〈x 7→ ()〉 : (x : 1).
Moreover, consider a substitution Γ ` γ : (x : 1). Then by construction of
substitutions, γ is necessarily of the form γ = 〈x 7→ t〉 with a derivation for the
judgment Γ ` t : 1. The conversion rule (η1) applies and gives a definitional
equality Γ ` t ≡ () : 1. Hence, we have a definitional equality between the
substitutions Γ ` γ ≡ 〈x 7→ ()〉 : (x : 1). This proves that there is a unique
morphism Γ→ (x : 1) in the syntactic category SG.

Lemma 3. The syntactic categories SG and SG1 are equivalent.

Proof. Since the theory G1 contains all the rules of the theory G, any valid
context Γ ` (resp. any valid substitution ∆ ` γ : Γ) in the theory G also defines
a valid context Γ ` (resp. a valid substitution ∆ ` γ : Γ) in the theory G1.
Hence, there is an inclusion functor SG → SG1 . We show that this functor
is an equivalence, by showing that it is fully faithful and essentially surjective.
First we show that it is faithful by induction on the length of the target con-
text: If the target context is empty, then it is terminal, so the statement is
vacuous, consider two distinct substitutions ∆ ` 〈γ, x 7→ t〉 : (Γ, x : A) and
∆ ` 〈γ′, x 7→ t′〉 : (Γ, x : A) in the theory G. Then either the two substitutions
γ and γ′ are distinct in G, in which case the induction hypothesis shows that
they are distinct in G1, or necessarily the terms t and t′ are distinct in G. Since
these terms are in G, they are not of type 1, so there cannot be a definitional
equality between them in G1. This proves that 〈γ, x 7→ t〉 and 〈γ′, x 7→ t′〉 define
distinct arrows in SG1 , hence the functor is faithful. We show that it is full by
considering two contexts ∆ and Γ of G together with a substitution ∆ ` γ : Γ
in G1. Then the substitution is built out of terms of the context ∆, and since
none of the variables in Γ has type 1, none of those terms have type 1, so they
are all variables, of ∆, and hence the substitution γ is in fact definable in G.
Finally, we prove that this functor is essentially surjective. Indeed, first note
that for all context Γ, we have the pullback in SG1 :

(Γ, x : 1) (x : 1)

Γ ∅

y

13

Since both (x : 1) and∅ are terminal objects in SG1 , the display map (Γ, x : 1)→ Γ
is an isomorphism. Using this fact we can recursively eliminate all the variables
of type 1 in a context and show that every context is isomorphic to one without
any variable of type 1, that is, it is isomorphic to a context of G.

Proposition 5. There is an equivalence between the models of the theory G
and the models of the theory G1.

Proof. First note that the equivalence functor SG → SG1 induces an equiva-
lence of categories by pre-composition SetSG1 → SetSG . Since any type (resp.
any term) in the theory G also defines a type (resp. a term) in the theory G1, the
functor SG → SG1 can be seen as a functor above the category Fam. Moreover,
it is straightforward from the syntactic definition of this functor that it preserves
the terminal object and the context extension on the nose, hence this functor
defines morphism of category with families.This shows that the pre-composition
restricts to the models to provide a functor Mod (SG1) → Mod (SG). Con-
sider the functor f : SG1 → SG which is the adjoint inverse of the inclusion.
Remark that the functor f cannot be made into a functor of categories with
families, since for instance it sends the context (∅, x : 1) onto the context ∅,
so it cannot preserve the context extension on the nose. However, by definition
f preserves all limits, so in particular it preserves the terminal objects and the
pullbacks along display maps. Considering a model F : SG → Set, this im-
plies that f?F also preserves the terminal object and the pullbacks along the
display maps, so it is a model and hence f? restricts as a functor on the mod-
els f? : Mod (SG) →Mod (SG1), defining an inverse to the previous functor,
hence the equivalence of categories.

The desuspension operation. In order to express the theory MCaTT we
need an operation that we call the desuspension, that we first describe as asso-
ciating, to every context Γ of G, the context

yΓ in G1. It is defined by induction
on the raw syntax of the theory G, together with the corresponding operation
on types of G

y∅ = ∅
y(Γ, x : A) = (

yΓ, x :
yA)

y? = 1 x −→
A
y = x −−→yA y

Proposition 6. The desuspension respects the judgments, the following rules
are derivable

Γ `GyΓ `G1

Γ `G AyΓ `G1

yA Γ `G x : AyΓ `G1 x :
yA

Proof. We prove this result by mutual induction on the derivation tree of valid
judgments.

Induction case for contexts:

• A derivable context obtained by the rule (ec) is necessarily the context
∅ `G. The rule (ec) gives a derivation of

y∅ `G1

14

• A derivable context obtained by the rule (ce) is of the form (Γ, x : A) `G,
by the induction case on types we have

yΓ `G1

yA. The rule (ce) yields
a derivation for

yΓ, x :
yA `G1 .

Induction for types:

• A derivable type obtained by the rule (?-intro) is of the form Γ `G ?, we
necessarily have Γ `G. The induction case for contexts implies

yΓ `G1 .
The rule (1-intro) then provides a derivation for

yΓ `G1 1.

• A derivable type obtained by the rule (→-intro) is of the form Γ `G t −→
A
u.

The induction cases for types and variables provide derivations for
yΓ `G1 A,yΓ `G1 t :

yA and
yΓ `G1 u :

yA. The rule (→-intro) then gives a

derivation for
yΓ ` t −−→yA u.

Induction for variables: A term obtained by the rule (Var) is a variable
Γ `G x : A, and we have Γ `G. The induction for contexts implies

yΓ `G1 .
Moreover, (x : A) ∈ Γ implies (x :

yA) ∈
yΓ. The rule (var) lets us construct

a derivation for
yΓ `G1 x :

yA.
From now on, when we perform proofs by induction on the derivation tree, we
rely on the form of the judgment, for instance, we may write: “For the context
∅ `” to mean that we discriminate on the rule (ec) and that in this case the
context is necessarily ∅. This is justified since the rule (ec) is the only one that
allows to derive ∅ `, and more generally each syntactic constructor constructor
corresponds to exactly one introduction rule.

Examples We illustrate the desuspension with a few examples. Intuitively
merely consists in rewriting the type ? into the type 1. For each of the context
in G1 we also give a simpler context to which it is isomorphic.

Γ
yΓ

(x : ?) (x : 1) ' ∅
(x : ?, y : ?, f : x −→

?
y) (x : 1, y : 1, f : x −→

1
y) ' (f : ?)

(x : ?, y : ?, f : x −→
?
y, g : y −→

?
x) (x : 1, y : 1, f : x −→

1
y, g : z −→

1
y) ' (f : ?, g : ?)

2.2 The theory MCaTT
The type theory MCaTT relies on the theory CaTT on a fundamental level: Its
inference rules use the derivability of judgments in CaTT. To express these rules
we need to generalize the desuspension as an operation from the raw syntax of
CaTT to the raw syntax of MCaTT. The raw syntax of MCaTT is obtained
from the one of G1 by adding two term constructors mop and mcoh. A term
expression is either a variable, or of the form mopΓ,A[γ] or mcohΓ,A[Γ] with Γ

15

a ps-context and A a type and δ a substitution. We sometimes unite these
two cases under the notation mconstr which means either one of mop or mcoh.
The variable set of these terms is not well defined (since not invariant under
definitional equality), but the action of substitution is, and it is defined by
mconstrΓ,A[γ][δ] = mconstrΓ,A[γ ◦ δ]. By convention, whenever we use constr
and mconstr in the same equality, they are corresponding constructors, so either
op and mop or coh and mcoh.

The general desuspension operation. We generalize the desuspension op-
eration to contexts, types, terms and substitutions expressions of the theory
CaTT as followsy∅ = ∅

y(Γ, x : A) =
yΓ, x :

yAy? = 1
y(t −→

A
u) =

yt −−→yA
yu

yx = x
yconstrΓ,A[γ] = mconstrΓ,A[

yγ]y〈〉 = 〈〉
y〈γ, x 7→ t〉 = 〈

yγ, x 7→ yt〉
The theory MCaTT. The introduction rules for the constructors mop and
mcoh reuse a lot of the machinery that we have developed for the theory CaTT.
We use the desuspension operation to transfer this machinery to the theory
MCaTT.

Γ `ps Γ `op A ∆ ` γ :
yΓ

∆ ` mopΓ,A : (
yA)[γ]

(mop-intro)
Γ `ps Γ `coh A ∆ ` γ :

yΓ

∆ ` mcohΓ,A : (
yA)[γ]

(mcoh-intro)

In the above rules, the judgments Γ `ps, Γ `op A and Γ `coh A are the judgments
defined for the theory CaTT. In particular, although A is used as an index for
the terms of the theory MCaTT, it may not be a valid type in this theory, but
it has to be a valid type in the theory CaTT. For instance in the second of our
following example, the type A uses the expression comp that we have defined as
a constructor of CaTT and not of MCaTT. All the rules of the theory MCaTT
are summarized in Appendix A.4 to provide a self-contained overview.

Examples. We do not provide an implementation for this theory, but we can
check by hand a few examples of derivations as a sanity check for our definition
of monoidal weak ω-categories.

• Monoidal product: First consider the ps-context Γcomp, that we have de-
fined in Section 1.3. We have

yΓcomp ' (f : ?, g : ?), thus for any con-
text ∆, a pair of terms t, u of type ? in ∆ define a unique substitution
∆ ` γ :

yΓcomp. The rule (mop-intro) gives a derivation of the prod-
uct of t and u as ∆ ` mopΓcomp,x→z

[γ] : ?. We simplify this notation as
∆ ` prod t u : ?.

16

• Associativity of monoidal product: Similarly, consider the context Γassoc
defined in Section 1.3. A context ∆ in MCaTT equipped with three terms
t, u, v of type ? define a unique substitution ∆ ` γ :

yΓassoc. Hence
the rule (mcoh-intro) provides an associator for the monoidal product
∆ ` mopΓassoc,comp (comp f g) h→comp f(comp g h) : prod (prod t u) v → prod t (prod u v)
We simplify this notation as ∆ ` passoc t u v : prod (prod t u) v → prod t (prod u v).

• Neutral element: Consider the ps-context Γneutral = (x : ?). ThenyΓneutral is terminal. The rule (mcoh-intro) allows to derive the unit
in any context ∆ as ∆ ` mcohΓneutral,x→x : ?.

3 Syntactic categories of CaTT and MCaTT
We now relate the two theories CaTT and MCaTT to each other via a pair of
functorial translations. We have already seen one of these translations: the
desuspension, the other one is called the reduced suspension. Our approach for
defining these translations follows the same plan: first define them on a raw
syntactic level, and then lift them to the syntactic categories by showing that
they preserve the judgments. We then prove that these two translations are
closely related, as they define a coreflective adjunction between the syntactic
categories.

3.1 The desuspension functor
We have already defined the desuspension operation, that we have used freely
on the raw syntax of the theory. We now lift this operation to the syntactic cat-
egories by showing that it respects the derivability of judgments. We first prove
following result about the interaction of the desuspension with the application
of substitutions on a raw syntax level.

Lemma 4. Given a substitution ∆ ` γ : Γ, for any type Γ ` A, we havey(A[γ]) =
yA[

yγ], for any term Γ ` t : A, we have
y(t[γ]) =

yt[yγ] and for any
substitution Γ ` θ : Θ, we have

y(θ ◦ γ) =
yθ ◦ yγ.

Proof. We prove this by mutual induction

Induction for types:

• In the case of the type ?, we have
y(?[γ]) = 1 and

y?[yγ] = 1.

• In the case of a type of the form t −→
A
u, we have the following equalities

y((t −→
A
u)[γ]) =

y(t[γ]) −−−−−→y(A[γ])

y(u[γ])
y(t −→

A
u)[
yγ] =

yt[yγ] −−−−−→yA[
yγ]

yu[
yγ]

and we conclude by induction on types and terms.

17

Induction for terms:

• In the case of a variable Γ ` x : A, denote t = x[γ]. Then the association
x 7→

yt appears in yγ. Hence x[
yγ] =

y(x[γ]).
• In the case of a term of the form constrΓ,A[δ], the following equalities holdy(constrΓ,A[δ][γ]) = mconstrΓ,A[

y(δ ◦ γ)]
y(constrΓ,A[δ])[

yγ] = mconstrΓ,A[
yδ ◦ yγ]

The induction case for substitution then provides the equality between
these two expressions.

Induction for substitutions:

• In the case of the empty substitution 〈〉, we have 〈〉 ◦ γ = 〈〉, and hencey(〈〉 ◦ γ) = 〈〉. But we also have
y〈〉 ◦ γ = 〈〉.

• In the case of a substitution of the form 〈θ, x 7→ t〉, we have the following
equalitiesy(〈θ, x 7→ t〉 ◦ γ) = 〈

y(θ ◦ γ), x 7→
y(t[γ])〉

y〈θ, x 7→ t〉 ◦
yγ = 〈

yθ ◦ yγ, x 7→ yt[yγ]〉

Then the induction case for substitutions proves that
y(θ ◦ γ) =

yθ ◦ yγ,
and the induction case for terms applies and shows that

y(t[γ]) =
yt[yγ].

This proves the equality between the two above expressions.

Proposition 7. The rules are admissible

Γ `CaTTyΓ `MCaTT

Γ `CaTT AyΓ `MCaTT
yA Γ `CaTT t : AyΓ `MCaTT

yt :
yA ∆ `CaTT γ : Γy∆ `MCaTT

yγ :
yΓ

Proof. We prove this result by mutual induction on the derivation of the judge-
ments.

Induction for contexts:

• For the empty context ∅ `CaTT, we have
y∅ = ∅ and the rule (ec) gives

a derivation of
y∅ `MCaTT.

• For the context (Γ, x : A) `CaTT, we necessarily have Γ `CaTT and
Γ `CaTT A. By induction, we have

yΓ `MCaTT and
yΓ `MCaTT

yA.
Hence the rule (ce) gives a derivation for (

yΓ, x :
yA) `. We conclude by

noticing that
y(Γ, x : A) = (

yΓ, x :
yA).

Induction for types:

• For the type Γ `CaTT ?, we necessarily have Γ `CaTT. By induction, this
implies

yΓ `MCaTT. The rule (1-intro) gives a derivation for
yΓ `

y?.
• For the type Γ `CaTT t −→

A
u we have a derivation of Γ `CaTT A,

Γ `CaTT t : A and Γ `CaTT u : A. By induction, we get a derivation
of
yΓ `MCaTT

yA, yΓ `MCaTT
yt :

yA and
yΓ `MCaTT

yu :
yA. The

rule (→-intro) then provides a derivation of
yΓ `

yt −−→yA
yu.

18

Induction for terms:

• For a variable Γ `CaTT x : A, we necessarily have Γ `CaTT. By induction,
it provides a derivation of

yΓ `MCaTT. Moreover, we have the condition
(x : A) ∈ Γ, hence (x :

yA) ∈
yΓ. The rule (var) then proves

yΓ ` x :
yA.

• For a term of the form ∆ `CaTT constrΓ,A[γ] : A[γ], we have a derivation of
∆ `CaTT γ : Γ. By induction, provides a derivation for

y∆ `MCaTT
yγ :

yΓ.
The rule (mop-intro) or (mcoh-intro) then gives a derivation of

y∆ `MCaTT mconstrΓ,A[
yγ] :

yA[
yγ].

Induction for substitutions:

• For the empty substitution ∆ `CaTT 〈〉 : ∅, we have a derivation of
∆ `CaTT. By induction, it provides a derivation of

y∆ `MCaTT. The
rule (es) then proves

y∆ `MCaTT 〈〉 : ∅.
• For the substitution ∆ `CaTT 〈γ, x 7→ t〉 : (Γ, x : A), we have derivations

of ∆ `CaTT γ : Γ, Γ, x : A `CaTT and ∆ `CaTT t : A[γ]. By induction
those provide derivations of

y∆ `MCaTT
yγ :

yΓ,
yΓ, x :

yA `MCaTT

and
y∆ `MCaTT

yt :
y(A[γ]). Moreover, by Lemma 4, the last judgment

rewrites as
y∆ `

yt :
yA[

yγ]. Hence the rule (es) provides a derivation of
the judgment

y∆ `MCaTT 〈
yγ, x 7→ yt〉 : (

yΓ, x :
yA).

Categorical reformulation. We reformulate Lemma 4 and Proposition 7
in a categorical fashion, taking advantage of the formalism of categories with
families.

Corollary 1. The desuspension defines a morphism of categories with familiesy : SCaTT → SMCaTT.

Proof. We have proved in Proposition 7 that the desuspension sends contexts
(resp. substitutions) in CaTT onto contexts (resp. substitutions) in MCaTT,
and Lemma 4 shows that it respects composition. Hence, to prove that it is a
functor, it suffices to show that it preserves identity, which we do by induction.

• For the empty context ∅, the identity is the empty substitution id∅ = 〈〉,
and we have

y〈〉 = 〈〉.

• For the context (Γ, x : A), the identity is 〈idΓ, x 7→ x〉, whose image
is 〈
yidΓ, x 7→ x〉. By induction, we have

yidΓ = idyΓ
, which gives the

equality
yid(Γ,x:A) = idy(Γ,x:A)

.

We now show that this functor is a morphism of categories with families, be
defining the image of a type Γ ` A to be

yA and the image of a term Γ ` t : A

to be
yt. Proposition 7 shows that these elements live in the adequate set, and

Lemma 4 moreover ensures that this association is functorial, so
ydefines a mor-

phism in the slice category Cat/Fam. Since moreover the operation
y is defined

19

to preserve the terminal context and the context comprehension (by definition,
we have

y∅ = ∅ and
y(Γ, x : A) = (

yΓ, x :
yA) and

y〈γ, x 7→ t〉 = 〈
yγ, x 7→ yt〉),

it is a morphism of categories with families.

3.2 The reduced suspension functor
We define another translation going in the opposite direction called the reduced
suspension. It is an operation associating an expression of the theory CaTT to
every expression of the theory MCaTT. This operation is not however purely
syntactic, and even though it outputs a raw expression of CaTT, it is only
properly defined on the derivable expression of MCaTT.

The reduced suspension operation. In order to define the reduced sus-
pension, we assume the existence of a variable name that is completely fresh,
and call it •. This could be achieved by extending the set of variables that we
use with the variable •.

judgment definition judgment definition
∅ `

x∅ = (• : ?) Γ, x : 1 `
x(Γ, x : 1) =

xΓ
Γ, x : A `

x(Γ, x : A) = (
xΓ, x :

xA)

Γ ` 1
x1 = ? Γ ` ?

x? = • −→
?
•

Γ ` t −→
A
u

x(t −→
A
u
)

=
xt −−→xA

xu
Γ ` () : 1

x() = • Γ ` x : A (A 6= 1)
xx = x

Γ ` mconstrΘ,A[γ] : A[γ]
xmconstrΘ,A[γ] = constrΘ,A[•Θ ◦

xγ]

Γ ` 〈〉 : ∅
x〈〉 = 〈• 7→ •〉 Γ ` 〈γ, x 7→ t〉 : (∆, x : 1)

x〈γ, x 7→ t〉 =
xγ

Γ ` 〈γ, x 7→ t〉 : (∆, x : A)
x〈γ, x 7→ t〉 = 〈

xγ, x 7→ xt〉
Where the substitution •Θ is defined by induction on the context Θ ` of CaTT by

•∅ = 〈〉 •(Θ,x:A) = 〈•Θ, x 7→
xyx〉

In the case of a variable Γ ` x : A we have to assume that A 6= 1 to ensure that
the term is in normal form so that definitional equality is respected.
Remark 2. We do not define the reduced suspension as a function on the raw
syntax of MCaTT because we rely on the normal form in the theory MCaTT,
which is not defined on the raw syntax. To define the reduced suspension of a
variable term x, we need to know whether Γ ` x : 1 is derivable, in which case
the term is sent onto •.

Syntactic properties of the reduced suspension. We show a few techni-
cal results, that are useful to prove that the reduced suspension preserves the
judgments.

20

Lemma 5. For all substitution ∆ `MCaTT γ : Γ, we have •[
xγ] = •.

Proof. By definition of
xγ, the only mapping • 7→ t in

xγ is • 7→ •.

Lemma 6. Given a substitution ∆ `MCaTT γ : Γ, the following hold

• for any type Γ `MCaTT A we have the equality
x(A[γ]) =

xA[
xγ]

• for any term Γ `MCaTT t : A, we have the equality
x(t[γ]) =

xt[xγ]

• for any substitution Γ `MCaTT δ : ∆, we have the equality
xδ ◦ γ =

xδ ◦xγ.
Proof. We suppose given the substitution γ and prove these three results by
mutual induction

Induction for types:

• For the type 1, we have 1[γ] = 1, hence
x(1[γ]) =

x1 = ?. But we also
have

x1[
xγ] = ?[

xγ] = ?.

• For the type t −→
A
u, we have the two following equalities

x((t −→
A
u)[γ]) =

x(t[γ]) −−−−−→x(A[γ])

x(u[γ]) (
x(t −→

A
u))[

xγ] = (
xt)[xγ] −−−−−−→

(
xA)[

xγ]

(
xu)[

xγ]

and by induction, we have
x(A[γ]) = (

xA)[
xγ],

x(t[γ]) = (
xt)[xγ] andx(u[γ]) = (

xu)[
xγ].

Induction for terms:

• For the term (), we have
x(()[γ]) = •. and also

x()[
xγ] = •[

xγ].
Lemma 5 shows

x()[
xγ] = •.

• For the term Γ ` x : A (6= 1), by definition,
xγ defines the mapping

x 7→
x(x[γ]), so x[

xγ] =
x(x[γ]).

• For a term of the form mopΓ,A[δ] we have the following equalitiesx(mconstrΓ,A[δ][γ]) = constrΓ,A[•Γ ◦
x(δ ◦ γ)] (

xmconstrΓ,A[δ])[
xγ] = constrΓ,A[(•Γ ◦

xδ) ◦ xγ]

By induction and associativity of composition, these two terms are equal.

Induction for substitutions:

• For the substitution 〈〉, we have
x(〈〉 ◦ γ) = 〈• 7→ •〉 and

x〈〉◦xγ = 〈• 7→ •[
xγ]〉.

Lemma 5 this shows that
x〈〉 ◦ xγ = 〈• 7→ •〉.

• For the substitution Γ ` 〈θ, x 7→ t〉 : (Θ, x : 1), we have the following
equalitiesx(〈θ, x 7→ t〉 ◦ γ) = 〈

x(θ ◦ γ)〉
x〈θ, x 7→ t〉 ◦

xγ = 〈
xθ ◦ xγ〉

and we conclude by the induction case for substitutions.

21

• For a substitution of the form Γ ` 〈θ, x 7→ t〉 : (Θ, x : A) with A 6= 1, we
have the equalitiesx(〈θ, x 7→ t〉 ◦ γ) = 〈

x(θ ◦ γ), x 7→
x(t[γ])〉

x〈θ, x 7→ t〉 ◦
xγ = 〈

xθ ◦ xγ, x 7→ (
xt)[xγ]〉

and by conclude by the induction cases for substitutions and terms.

Reduced suspension on the theory G. Note that the theory G can be
included in the theory MCaTT, by sending any expression in the theory G to
the same expression, seen as an expression of MCaTT. The only difference is that
the type ? is primitive in G while it is interpreted as () → () in MCaTT. We
first focus on the restriction of the reduced suspension to the theory G. Since the
reduced suspension sends variables on variables, it preserves the expressions of
G. We show that this transformation respects the derivation. This is a technical
intermediate for generalizing the reduced suspension as a transformation from
MCaTT to CaTT.

Lemma 7. In the theory G, the following rules are admissible

Γ `GxΓ `G
Γ `G AxΓ `G

xA Γ `G t : AxΓ `G
xt :

xA ∆ `G γ : Γx∆ `G
xγ :

xΓ

Proof. We prove this result by mutual induction on contexts, types, terms and
substitutions

Induction for contexts:

• For the empty context ∅, we have
x∅ = (• : ?), and we can construct a

derivation of
x∅ ` by applying successively the rules (ec),(?-intro) and

(ce).

• For the context (Γ, x : A) ` (A 6= 1 since we are in the theory G), we have
Γ ` A. By induction this gives a derivation for

xΓ `
xA. The rule (ce),

provides a derivation for (
xΓ, x :

xA) `

Induction for types:

• For the type Γ ` ?, we have a derivation of Γ `. By the induction, this
shows

xΓ `. Since (• : ?) ∈
xΓ, we can construct a derivation of

xΓ `
x?

as follows xΓ `xΓ ` ?
(?-intro)xΓ ` (• : ?) ∈

xΓxΓ ` • : ?
(var)

xΓ ` (• : ?) ∈
xΓxΓ ` • : ?

(var)xΓ ` • −→
?
•

(→-intro)

• For the type Γ ` t −→
A

u, we have derivations of Γ ` A, Γ ` t : A and

Γ ` u : A. By induction, those give derivations of
xΓ `

xA, xΓ `
xt :

xA
22

and
xΓ `

xu :
xA. The rule (→-intro) then provides a derivation ofxΓ `

xt −−→xA
xu.

Induction for terms: A term in G is a variable Γ ` x : A. For such a variable,
we have a derivation of Γ `, and by induction it gives a derivation of

xΓ `.
Moreover, the condition (x : A) ∈ Γ is satisfied, and since we are the in the
theory G, A 6= 1. So we have (x :

xA) ∈
xΓ. The rule (var) then yields a

derivation of
xΓ ` x :

xA.
Induction for substitutions:

• For the substitution ∆ ` 〈〉 : ∅, we have a derivation of ∆ `. By in-
duction, this gives a derivation of

x∆ `. Moreover, we also have by
definition that (• : ?) ∈

x∆, and we have already constructed a deriva-
tion of (• : ?) `. This lets us construct a derivation for

x∆ `
x〈〉 :

x∅ as
follows x∆ `x∆ ` 〈〉 : ∅

(es)
(• : ?) `

x∆ ` (• : ?) ∈
x∆x∆ ` • : ?

(var)x∆ ` 〈• 7→ •〉 : (• : ?)
(se)

• For the substitution ∆ ` 〈γ, x 7→ t〉 : (Γ, x : A), we have A 6= 1 since we
are in G. Then we necessarily have derivations of ∆ ` γ : Γ, (Γ, x : A) `
and ∆ ` t : A[γ]. By induction, those give derivations of the judgmentsx∆ `

xγ :
xΓ,

xΓ, x :
xA ` and

x∆ `
xt :

xA[γ]. Lemma 6 allows to
rewrite the last of these judgments as

x∆ `
xt :

xA[
xγ]. The rule (se)

then provides a derivation of
x∆ `

x〈γ, x 7→ t〉 :
x(Γ, x : A).

Properties of the substitution •∆. The definition of the reduced suspen-
sion relies on the substitution •∆. We prove syntactic properties about this
substitution.

Lemma 8. We have the following result for the action of the substitution •∆
on terms, types and substitutions.

• For any type ∆ `CaTT A, we have A[•∆] =
xyA

• For any term ∆ `CaTT t : A, we have t[•∆] =
xyt.

• For any substitution ∆ `CaTT γ : Γ, we have γ ◦ •∆ = •Γ ◦
xyγ.

Proof. We prove these equalities by mutual induction

Induction on types:

• For the type ∆ `CaTT ?, we have
xy? = ? and by definition, ?[•∆] = ?.

23

• For the type ∆ `CaTT t −→
A
u, we have the equalities

(t −→
A
u)[•∆] = t[•∆] −−−−→

A[•∆]
u[•∆]

xy(t −→
A
u) =

xyt −−−→xyA
xyu

and by induction A[•∆] =
xyA, t[•∆] =

xyt and u[•∆] =
xyu.

Induction on terms:

• For a variable ∆ ` x : A, by definition the mapping x 7→
xyx is the only

mapping for x in •∆, hence x[•∆] =
xyx.

• For a term of the form ∆ ` constrΓ,A[γ] : A[γ], we have the following
equations

constrΓ,A[γ][•∆] = constrΓ,A[γ ◦ •∆]
xyconstrΓ,A[γ] = constrΓ,A[•Γ ◦

xyγ]

and the induction case for substitutions then gives the equality.

Induction case for substitutions:

• For the empty substitution ∆ ` 〈〉 : ∅, since •∅ = 〈〉, we have the
equalities

〈〉 ◦ •∆ = 〈〉 •∅ ◦
xy〈〉 = 〈〉

• For of the substitution ∆ ` 〈γ, x 7→ t〉 : (Γ, x : A), since the sub-
stitution •Γ has source

xyΓ that do not use the variable x, we have
•Γ ◦ 〈

xyγ, x 7→ xyt〉 = •Γ ◦
xyγ. Moreover, if x is of type ? we havexyx[〈

xyγ, x 7→ xyt〉] = • =
xyt, and if x is not of type ?, the expression

x[〈
xyγ, x 7→ xyt〉] =

xyt. Using the two previously shown equalities to
simplify the expressions yields

〈γ, x 7→ t〉 ◦ •∆ = 〈γ ◦ •∆, x 7→ t[•∆]〉 •(Γ,x:A) ◦ 〈
xyγ, x 7→ xyt〉 = 〈•Γ ◦

xyγ, x 7→ xyt〉
By induction we have γ ◦ •∆ = •Γ ◦

xyγ and t[•∆] =
xyt

Lemma 9. The following rule is admissible

Γ `CaTTxyΓ `CaTT •Γ : Γ

Proof. This result is proved by induction on the context Γ.

• For the context ∅, we have already proven that
xy∅ `. The rule (es)

proves that
xy∅ ` 〈〉 : ∅.

• For the context (Γ, x : A) `, we have by induction
xyΓ ` •Γ : Γ. By

Proposition 1, this gives a derivation of
xy(Γ, x : A) ` •Γ : Γ. Moreover,

by Lemma 7, we have that
xy(Γ, x : A) ` x :

xyA, and Lemma 8 then
shows that we have

xy(Γ, x : A) ` x : A[•Γ]. The rule (se) then gives a
derivation of

xy(Γ, x : A) ` •(Γ,x:A) : (Γ, x : A).

24

Correctness of the reduced suspension. We are now equipped to general-
ize the reduced suspension as an operation from the theory MCaTT to the theory
CaTT. We prove the following correctness result showing that this operation is
a well defined translation between these two theories.

Proposition 8. The reduced suspension operation preserves derivability, the
following rules are admissible

∆ `MCaTTx∆ `CaTT

∆ `MCaTT Ax∆ `CaTT
xA ∆ `MCaTT t : Ax∆ `CaTT

xt :
xA ∆ `MCaTT γ : Γx∆ `CaTT

xγ :
xΓ

Proof. The proof of this result is essentially the same as the proof of Lemma 7,
but still needs some adaptations. For the sake of completeness and to avoid the
reader to constantly refer to the previous proof, we give the complete proof here.
We perform mutual induction on the derivation trees and keep all the cases in
normal form.

Induction for contexts:

• For the empty context ∅, we have
x∅ = (• : ?), and we can construct a

derivation of
x∅ ` by applying successively the rules (ec),(?-intro) and

(ce).
• For the context (Γ, x : 1) `, we have

x(Γ, x : 1) =
xΓ and by inductionxΓ `.

• For the context (Γ, x : A) ` with A 6= 1, we have Γ ` A. By induction
this gives a derivation for

xΓ `
xA. The rule (ce), provides a derivation

for (
xΓ, x :

xA) `

Induction for types:

• For the type Γ ` 1, we have a derivation of Γ `. By induction, we
have a derivation of

xΓ `. The rule (?-intro) then applies to provide a
derivation of

xΓ ` ?.

• For the type Γ ` t −→
A

u, we have derivations of Γ ` A, Γ ` t : A and

Γ ` u : A. By induction, those give derivations of
xΓ `

xA, xΓ `
xt :

xA
and

xΓ `
xu :

xA. The rule (→-intro) then provides a derivation ofxΓ `
xt −−→xA

xu.
Induction for terms:

• For the term Γ ` () : 1, we have
x() = •. By induction, we have

xΓ `.
Since moreover (• : ?) ∈

xΓ, the rule (var) gives a derivation of
xΓ ` • : ?.

• For a variable Γ ` x : A, since we consider normal forms, A 6= 1. We
have a derivation of Γ `, and by induction it gives a derivation of

xΓ `.
Moreover, the condition (x : A) ∈ Γ is satisfied, hence so is (x :

xA) ∈
xΓ.

The rule (var) then yields a derivation of
xΓ ` x :

xA.
25

• For a term of the form mconstrΓ,A[γ], we have a derivation of ∆ ` γ :
yΓ.

By induction, this gives a derivation for
x∆ `

xγ :
xyΓ. Moreover,

Lemma 9 ensures that we have
xyΓ ` •Γ : Γ, hence we have a substitutionx∆ ` •Γ ◦

xγ : Γ. By applying the rule (op-intro) or (coh-intro), this
provides a derivation for the judgment

x∆ ` constrΓ,A[•Γ◦
xγ] : A[•Γ◦

xγ].
The following equalities then prove that the type is the one we expect

A[•Γ ◦
xγ] =

xyA[
xγ] By Lemma 8

=
x((
yA)[γ]) By Lemma 6

Induction for substitutions:

• For the substitution ∆ ` 〈〉 : ∅, we have a derivation of ∆ `. By in-
duction, this gives a derivation of

x∆ `. Moreover, we also have by
definition that (• : ?) ∈

x∆, and we have already constructed a deriva-
tion of (• : ?) `. This lets us construct a derivation for

x∆ `
x〈〉 :

x∅ as
follows x∆ `x∆ ` 〈〉 : ∅

(es)
(• : ?) `

x∆ ` (• : ?) ∈
x∆x∆ ` • : ?

(var)x∆ ` 〈• 7→ •〉 : (• : ?)
(se)

• For the substitution ∆ ` 〈γ, x 7→ t〉 : (Γ, x : 1), we have the equalitiesx(Γ, x : 1) =
xΓ

x〈γ, x 7→ t〉 =
xγ

Since we have ∆ ` γ : Γ, by induction we deduce
x∆ `

xγ :
xΓ.

• For the substitution ∆ ` 〈γ, x 7→ t〉 : (Γ, x : A), we have A 6= 1 since we
are in G. Then we necessarily have derivations of ∆ ` γ : Γ, (Γ, x : A) `
and ∆ ` t : A[γ]. By induction, those give derivations of the judgmentsx∆ `

xγ :
xΓ,

xΓ, x :
xA ` and

x∆ `
xt :

xA[γ]. Lemma 6 allows to
rewrite the last of these judgments as

x∆ `
xt :

xA[
xγ]. The rule (se)

then provides a derivation of
x∆ `

x〈γ, x 7→ t〉 :
x(Γ, x : A).

Examples. We give a few examples of contexts in MCaTT along with their
translations in CaTT to build intuition on this translation:

Γ = (x : ?)
xΓ = (• : ?, x : • −→

?
•)

Γ = (x : ?, f : x −→
?
x, a : 1)

xΓ = (• : ?, x : • −→
?
•, f : x −−−→

•→•
x)

Γ = (x : ?, y : ?; f : x −→
?
y)

xΓ = (• : ?, x : • −→
?
•, y : • −→

?
•, f : x −−−→

•→•
y)

These examples help understand why it is important to require that the trans-
lation is defined on normal forms. Indeed, in the second example, we have a
derivation Γ ` a : 1 but the term is not in normal form. Putting it in normal
form before applying the reduced suspension yields to the term Γ ` • : 1 which
is indeed derivable. However, had we simply defined the reduced suspension of
any variable to be itself, without consideration of whether it is in normal form,
we would have gotten the judgment

xΓ ` a : ? which is not derivable.

26

Reduced suspension as a functor. Like for the desuspension, we can re-
formulate this result in a more categorical flavor. However the result that we
prove here is weaker.

Corollary 2. The reduced suspension operation defines a functor
x : SMCaTT → SCaTT.

Proof. We have proved in Lemma 6 and Proposition 7 that this operation is
well defined, and that it preserves the composition of substitutions, so it suffices
to prove that it preserves the identity. We proceed by induction on the length
of the context

• For the empty context ∅, we have id∅ = 〈〉 along with
x∅ = (• : ?) andx〈〉 = 〈• 7→ •〉, which is the identity of

x∅.

• For a context of the form (Γ, x : 1), we have id(Γ,x:1) = 〈idΓ, • 7→ •〉.
Hence

xid(Γ,x:1) =
xidΓ, and by induction

xidΓ = idxΓ
. We conclude

using the fact that
x(Γ, x : 1) =

xΓ.

• For a context of the form (Γ, x : A) withA 6= 1, we have
xid(Γ,x:A) = 〈

xidΓ, x 7→ x〉,
and by induction, we have

xidΓ = idxΓ
, which lets us conclude thatxid(Γ,x:A) = idx(Γ,x:A)

.

Note that in fact Lemma 6 and Proposition 7 provide more structure that this,
they show that this functor is almost a morphism of category with families.
In fact it defines a morphism in Cat/Fam, which respects the structures of
categories with families of SMCaTT and SCaTT. This functor however fails to
be a morphism of categories with families as it does not preserve the terminal
object, since the context ∅ is sent onto (• : ?) which is not terminal. This result
however is complicated to formulate cleanly in a categorical way.

3.3 Interaction between desuspension and reduced sus-
pension

We have defined the theory MCaTT together with two translations, the desus-
pension and the reduced suspension, that define functors between their syntactic
categories. We now study how these translations relate to each other syntacti-
cally and translate this result categorically as a relation between the two func-
tors. In order to understand the interaction between the desuspension and the
reduced suspension, we first show the following result, analogous to Lemma 2
for the theory MCaTT.

Lemma 10. The context (x : 1) is terminal in the category SMCaTT, and more
generally the family of substitutions Γ ` 〈idΓ, x 7→ ()〉 : (Γ, x : 1) defines a
natural isomorphism.

Proof. The proof of the initiality of the context (x : 1) is the exact same that the
one of Lemma 2. The generalization of this statement is obtained by noticing

27

that we have the following pullback square

(Γ, x : 1) (x : 1)

Γ ∅

〈x, 7→x〉

y

Since the map (x : 1) → ∅ is an isomorphism whose inverse is given by the
substitution ∅ ` 〈x 7→ ()〉 : (x : 1), in this pullback implies that the left
most vertical arrow is an isomorphism. Moreover, the structure of category
with families implies that the inverse of this map is given by the substitution
〈idΓ, x 7→ ()〉. The family of morphisms defined this way is natural since the
substitution is functorial, as it is defined by a universal property.

Desuspension of the reduced suspension. We can now express one of
the relations that link the desuspension and the reduced suspension. We first
express these relations on the type theory before leveraging the expressive power
of the categorical semantics to provide a much more compact reformulation.

Proposition 9. There exists a natural transformation η : idSMCaTT →
y ◦ x

which is natural isomorphism.

Proof. We define a family of maps ηΓ : Γ →
yxΓ for every context Γ of the

theory MCaTT, and show that these maps are isomorphisms and that they are
natural in Γ. We proceed by mutual induction on the theory MCaTT and prove

• For all context Γ `, there is an isomorphism ηΓ : Γ→
yxΓ.

• For all type Γ ` A, we have the equality Γ ` A ≡
yxΓ[ηΓ].

• For all term Γ ` t : A, we have Γ ` t ≡
yxt[ηΓ] : A.

• For all substitution ∆ ` γ : Γ, the following square commutes

yx∆
yxΓ

∆ Γ

yxγ
η∆ ∼ ∼ηΓ

γ

• (auxiliary induction case) for all context Γ in the theory CaTT, we havey•Γ ◦ ηyΓ
= idyΓ

.

Induction for contexts:

• For the empty context ∅ `, we have
x∅ = (• : ?), and thus

yx∅ = (• : 1).
Lemma 10 then provides the desired isomorphism η∅ = 〈• 7→ ()〉 : ∅→

yx∅.

28

• For a context of the form (Γ, x : 1) `, we have
x(Γ, x : 1) =

xΓ, henceyx(Γ, x : 1) =
yxΓ. By Lemma 10, the following weakening is an iso-

morphism π : (Γ, x : 1)
∼→ Γ, and the induction hypothesis on con-

texts provides the isomorphism ηΓ : Γ
∼→
yxγ. By composition, this

provides the isomoprhism following (writing the weakening implicitly)
η(Γ,x:1) = ηΓ : (Γ, x : 1)→

yx(Γ, x : 1).

• For a context of the form (Γ, x : A) ` withA 6= 1, we have
x(Γ, x : A) = (

xΓ, x :
xA).

Since
xA is necessarily distinct from ?, we have

yx(Γ, x : A) = (
yxΓ, x :

yxA),
and the induction case for contexts provides the isomoprhism ηΓ : Γ

∼→
yxΓ.

Moreover, the induction case for types shows that Γ ` A ≡
yxA[ηΓ].

Hence we define the isomoprhism η(Γ,x:A) = 〈ηΓ, x 7→ x〉 : (Γ, x : A)
∼→
yx(Γ, x : A),

whose inverse is given by 〈η−1
Γ , x 7→ x〉.

Induction for types:

• For the type Γ ` 1, we have
yx1[ηΓ] = 1[ηΓ]. Since we have also by

definition 1[ηΓ] = 1, this shows that 1 =
yx1[ηΓ].

• For the type ? = () −→
1

(), we have
yx?[ηΓ] = •[ηΓ] −→

1
•[ηΓ]. Note that

by Proposition 8 along with the induction case for contexts, we have a
derivation of Γ ` •[ηΓ] : 1. Hence the rule (η1) applies and provides the
equality Γ ` ? ≡

yx?[ηΓ].

• For a type of the form Γ ` t −→
A
u with A 6= 1,

yxt −→
A
u =

yxt −−−→yxA
yxu.

The induction case for types then shows that Γ ` A ≡
yxA[ηΓ], and the

induction case for terms shows Γ ` t : A ≡
yxt[ηΓ] similarly for u, which

lets us conclude.

Induction for terms:

• For the term Γ ` () : 1, we have Γ `
yx()[ηΓ] : 1, and the rule (η1) gives

the desired definitional equality.

• For a variable Γ ` x : A, we need to have A 6= 1 for the term to be in
normal form, we have

xx = x and thus
yxx = x. Moreover, since the pair

x : A appears in Γ with A 6= 1, by definition of ηΓ (induction case for
contexts), the association x 7→ x appears in ηΓ, and hence

yxx[ηΓ] = x.

• For a term of the form mopΓ,A[γ], we have
xmopΓ,A[γ] = opΓ,A[•Γ ◦

xγ],
and thus we have the following equalities

(
yxmopΓ,A[γ])[η∆] = mopΓ,A[

y(•Γ ◦
xγ) ◦ η∆]

= mopΓ,A[
y•Γ ◦ (

yxγ ◦ η∆)] by Lemma 4

≡ mopΓ,A[(
y•Γ ◦ ηyΓ

) ◦ γ] by the induction case for substitutions

≡ mopΓ,A[γ] by the auxiliary induction case

29

Note that the that in the third step, the substitution ηyΓ
appears since

we started with a definition Γ whose target is
yΓ.

• The case for a term of the form mcohΓ,A[γ] follows the exact same steps.

Induction for substitutions:

• For the empty substitution ∆ ` 〈〉 : ∅, by the induction case for contexts,
we have the following square of maps

∆ ∅

yx∆ (x : 1)

〈〉

η∆ ∼ ∼η∅

yx〈〉
Since by Lemma 10 both ∅ and (x : 1) are terminal objects, this square
has to commute.

• For a substitution of the form ∆ ` 〈Γ, x 7→ t〉 : (Γ, x : 1), after applying
the induction case for contexts and computing the expressions, we are left
with the following square.

∆ (Γ, x : 1)

yx∆
yxΓ

〈γ,x 7→t〉

η∆ ∼ ∼η(Γ,x:1)

yxγ
Note that by definition, the map η(Γ,x:1) = (Γ, x : 1)→

yxΓ is the map ηΓ

weakened with respect to the variable x, hence we have η(Γ,x:1)◦〈γ, x 7→ t〉 = ηΓ◦γ.
By the induction case for substitutions, this expression is equal to

yxγ◦η∆,
which exactly provides the commutation of the above square.

• For a substitution of the form ∆ ` 〈γ, x 7→ t〉 : (Γ, x : A) with A 6= 1, we
have the following equalities

〈
yxγ, x 7→ yxt〉 ◦ η∆ = 〈

yxγ ◦ η∆, x 7→
yxt[η∆]〉

= 〈ηΓ ◦ γ, x 7→ t〉 By induction on terms and substitutions
= 〈ηΓ, x 7→ x〉 ◦ 〈γ, x 7→ t〉 Since ηΓ is weakened with respect to x

which give exactly the commutation of desired naturality square.

Auxiliary induction case: We prove by induction on contexts that
y•Γ◦ηyΓ

= idyΓ

• For the context ∅ in CaTT, the map
y•∅ ◦ ηy∅ defines a map

y∅→ y∅.

By definition,
y∅ is the terminal object in the category SMCaTT, the

aforementioned map is thus necessarily the identity.

30

• For the context (Γ, x : A) in CaTT, we have the following equalitiesy•(Γ,x:A) ◦ ηy(Γ,x:A)
= 〈
y•Γ,yxyx〉 ◦ ηyΓ

= 〈
y•Γ ◦ ηΓ,

yxx[ηyΓ
]〉 Since

yx = x

= 〈idΓ, x 7→ x〉 By induction on terms

A natural transformation. In order to study the reduced suspension, we
have introduced the family of substitutions •Γ for all contexts Γ, and we have
proved in Lemma 9, that it defines a family of morphisms •Γ :

xyΓ → Γ.
Moreover, the equality γ ◦ •∆ = •Γ ◦

xyγ that we proved in Lemma 8 for all
substitution γ can be expressed by the commutation of the following diagramxy∆ ∆

xyΓ Γ

•∆

xyγ γ

•Γ

So we have in fact already proven the following proposition, which is simply a
categorical reformulation of our previous fact

Proposition 10. The family of morphisms •Γ :
xyΓ → Γ defines a natural

transformation
x◦ y⇒ idSCaTT .

Adjunction between desuspension and reduced suspension. Combin-
ing Propositions 9 and 10, we have in fact proved the following categorical result
about the functors induced by desuspension and the reduced suspension.

Theorem 1. The functor
x is left adjoint to

y, the counit is given by the family
•Γ and the unit is the natural family of isomorphisms ηΓ. This adjunction is
thus coreflective.

Proof. We have already proved that these two natural transformations •Γ and
ηΓ are well defined, and that ηΓ is an isomorphism. So it suffices to prove that
they satisfy the zigzag identities. In fact we have also already proved one of
these, as the auxiliary induction case while proving Proposition 9. So we are
left to check the other identity, namely that for all context Γ in the theory
MCaTT, we have •xΓ

◦
xηΓ =

xΓ. We prove this statement by induction on
contexts.

• For the empty context ∅, since • is a variable, we have
xy• = •, and

hence

•x∅ ◦ xη∅ = •(•,?) ◦
x〈• 7→ ()〉 = 〈• 7→

xy•〉 ◦ 〈• 7→ •〉 = 〈• 7→ •〉 = idx∅
31

• For the context (Γ, x : 1), we have by induction

•xΓ,x:1
◦
xη(Γ,x:1) = •xΓ

◦
xηΓ = idxΓ

= idxΓ,x:1

• For the context (Γ, x : A) with A 6= 1, we have

•xΓ,x:A
◦
xη(Γ,x:A) = •

(
xΓ,x:

xA)
◦ 〈
xηΓ, x 7→ x〉

= 〈•xΓ
, x 7→

xyx〉 ◦ 〈xηΓ, x 7→
xx〉

= 〈•xΓ
◦
xηΓ, x 7→

xyx[〈ηΓ, x 7→
xx〉]〉

Using the induction hypothesis, and the fact that since x is a variable, we
have x =

yx =
xyx, it follows that •x(Γ,x:A)

◦
xη(Γ,x:A) = id

(
xΓ,x:

xA)
.

This adjunction is to be understood as an analogue in the world of categories of
the topological adjunction between the reduced suspension and the loop space.
In our terminology, the desuspension corresponds to the loop space, and the
reduced suspension corresponds to the reduced suspension.

Remark 3. The coreflective adjunction exhibits SMCaTT as isomorphic to a core-
flective subcategory of SCaTT. Moreover the essential image of

x is exactly the
category SCaTT,•. So a way to understand our type theory MCaTT is that it
achieves a structure of category with families on a category which is equivalent
to SCaTT,•, in such a way that that this structure coincide with the structure
on CaTT under the equivalence between SMCaTT and SCaTT,•.

4 Models of the type theory MCaTT.
Thanks to the desuspension and to the reduced suspension functors that we
have defined establish a strong relation between the models of the theory CaTT
and those of the theory MCaTT.

4.1 Action of reduced suspention and desuspension on the
models

Desuspension acting on the models of MCaTT. Consider a model F : SMCaTT → Set
and define the functor

y∗F : SCaTT → Set by precomposing with the functory, so we have
y∗F (Γ) = F (

yΓ) and
y∗F (γ) = F (

yγ). By Corollary 1,
y is

a morphism of categories with families, and those preserve display maps, the
terminal object and pullbacks along display maps. Since F is a model, it also
preserves the terminal and the pullback along display maps, hence so does the
composite

y∗F . Thus
y∗F is a model of the theory CaTT, and the desuspen-

sion induces a functor
y∗ : Mod (SMCaTT)→Mod (SCaTT). Moreover we have

32

y∗F (x : ?) = F (x : 1) and by Lemma 10, the context (x : 1) is terminal and
by definition, F preserves the terminal object, it follows that

y∗F (x : ?) is ter-
minal in Set, hence

y∗F is an object of Mod• (SCaTT). This shows that the
desuspension induces a functor

y∗ : Mod (MCaTT)→Mod• (SCaTT).

Reduced suspension acting on the models of CaTT. We define a similar
construction for the reduced suspension. However, since the reduced suspension
does not define an image for every term and does not preserve the terminal
object, the construction is slightly more involved. We first consider start by
showing the following result

Lemma 11. Given a model F : CaTT → Set of the type theory CaTT, the
functor

x∗F preserves the pullbacks along display maps of SMCaTT.

Proof. We consider a pullback along a display map, which is of the form

(∆, x : A[γ]) (Γ, x : A)

∆ Γ

y
π π

γ

We first consider the case A = 1. In this case, the image by
x∗F of the above

square writes as x∗F (∆)
x∗F (Γ)

x∗F (∆)
x∗F (Γ)

y

x∗F (γ)

id id

x∗F (γ)

which is a pullback. We now consider the case A 6= 1, then the equalityx(A[γ]) =
xA[

xγ] given by Lemma 6 along with Lemma 1 shows that we have
the following pullback square in SCaTTx(∆, x : A[γ])

x(Γ, x : A)

x∆
xΓ

y
π π

xγ
Since F preserves pullbacks along display maps, this shows that the image of
the initial square by

x∗F is a pullbackx∗F (∆, x : A[γ])
x∗F (Γ, x : A)

x∗F (∆)
x∗F (Γ)

y
π π

γ

33

This shows that
x∗F is a model exactly when it preserves the initial ob-

ject. Since we have by definition
x∗F (∅) = F (• : ?), this condition translates

to F (•,∅) being a singleton. Hence
x∗F is a model if and only if F is an object of

Mod• (SCaTT). This shows that
x∗ defines a functor x∗ : Mod• (SCaTT)→Mod (SMCaTT).

4.2 Models of the category SMCaTT

Using the desuspension and the reduced suspension, we have defined a pair of
functors

y∗ and x∗ between the categories Mod (SMCaTT) and Mod• (SCaTT).

Theorem 2. The functors
y∗ and x∗ define an equivalence of categories between

Mod (SMCaTT) and Mod• (SCaTT)

Proof. First, Proposition 9 implies
x∗ ◦ y∗ =

(y◦ x)∗ ' idSMCaTT and Propo-
sition 10 shows that there is a natural transformation, obtained by whiskeringy∗◦x∗ =

(x◦ y)∗ ⇒ idMod• (SCaTT) So it suffices to show that this natural trans-
formation is a natural isomorphism, that is for any F ∈Mod• (SCaTT) and all
context Γ in CaTT, the map F (•Γ) : F (

xyΓ) → F (Γ) is an isomorphism. We
prove this property by induction on the context Γ.

• For the empty context ∅, we necessarily have that F (∅) = {•}, and sincexy∅ = D0 and F ∈ Mod• (SCaTT), we also have that F (
xy∅) = {•}.

Hence F (•∅) is the unique map between the singleton to itself, which is
an isomorphism.

• For a context of the form (Γ, x : ?), it is obtained as a (trivial) pullback,
and the map •(Γ,x:?) is obtained by universal property of the pullback, as
follows xy(Γ, x : ?)

(Γ, x : A) D0

Γ ∅

•Γ

x

•(Γ,x:?)

π

x

y
π

?

Taking the image by F on this pullback yields another pullback in Set
(since F is a model of CaTT), as follows

F
(xy(Γ, x : ?)

)
F (Γ, x : A) {•}

FΓ {•}
F•Γ

!

F•(Γ,x:?)

Fπ

!

y
!

!

34

Since the square is a pullback, Fπ is an isomorphism, and since by induc-
tion F•Γ is also an isomorphism, necessarily F•Γ,x:? is an isomorphism.

• For a context of the form (Γ, x : A) where A is a type distinct from ?,
the context is obtained as a pullback, the context

xy(Γ, x : A) is also a
pullback and the substitution •(Γ,x:A) is obtained by universal property as
described in the following diagram which has the shape of a cube whose
faces are commutative and whose front and back face are pullbacksxy(Γ, x : A) Dn+1

(Γ, x : A) Dn+1

xyΓ Sn

Γ Sn

x

π

•(Γ,x:A)

y

π

x

y

π

xyA

•Γ

A

π

Taking the image by F of this diagram yields another cube whose faces
are all commutative square, and whose front and back square are again
pullback squares, since as a model, F preserves the pullbacks along the
display maps (in the following figure, we have left implicit most of the
arrows, they are simply the image by F of the ones of the previous figure).

F (
xy(Γ, x : A)) FDn+1

F (Γ, x : A) FDn+1

F (
xyΓ) FSn

FΓ FSn

x

F•(Γ,x:A)

y

y

F•Γ

∼

FA

By induction, the map F (•Γ) is an isomorphism, making the span defining
F (Γ, x : A) and the span defining F (

xy(Γ, x : A)) isomorphic. This proves
that the map F (•(Γ,x:A)) is also an isomorphism, by uniqueness of the
pullback up to isomorphism.

35

Reflective localization. We now give a reformulation of the construction
we have presented. First note that the opposite of a category with families C
embeds inside its category of models via a Yoneda embedding

Cop ↪→ Mod (C)
Γ 7→ C(Γ,_)

Indeed, the functor C(Γ,_) preserves the pullbacks along display maps (and in
fact all limits) by continuity of the Hom-functor. This lets us see the objects ∅
and D0 as particular objects of Mod (SCaTT), with ∅ being the initial object.
We then consider the unique map s : ∅ → D0 in the category Mod (SCaTT).
Then the category Mod• (SCaTT) is the category of all the s-local objects, i.e.,
all objects F such that the map

Mod (SCaTT) (s, F) : Mod (SCaTT) (∅, F)→Mod (SCaTT) (D0, F)

is a natural isomorphism. Indeed, since ∅ is an initial objects, s-local objects are
exactly those such that Mod (SCaTT) (D0, F) is a singleton, which reformulates
as F (D0) being a singleton by the Yoneda lemma. This exhibits Mod• (SCaTT)
as a reflective localization of the category Mod (SCaTT) at s. Theorem 2 then
shows that Mod (SMCaTT) is equivalent to Mod• (SCaTT), and thus is also a
reflective localization ofMod (SCaTT) at s. This localization lifts the coreflective
adjunction between SCaTT and SMCaTT realized by the desuspension and the
reduced suspension, that we have stated in Theorem 1.

4.3 Interpretation
As we have proved independently [8], the models of the theory CaTT are equiv-
alent to the Grothendieck-Maltsiniotis definition of weak ω-categories with the
Batanin-Leinster coherator. In light of this fact, Theorem 2 can be reformulated
as stating that the models of MCaTT are the weak ω-categories (in the sense
of Grothendieck-Malstiniotis with the Batanin-Leinster coherator) with a single
object. It is expected from higher category theory that such a result holds [3].
Recall our interpretation of Sop

CaTT as finitely generated computads, and assume
that similarly Sop

MCaTT is the category of finitely generated computads for an
appropriate notion of computads for monoidal weak ω-categories. We can al-
ways view a computad for monoidal weak ω-category as a weak ω-category with
a single object. In this case, it turns out that when adopting this view, the
weak ω-category that we retrieve is again a freely generated computad, and this
is why we were able to formulate the theory of monoidal weak ω-categories in
terms of the theory of weak ω-category.

However, this fails for k-monoidal weak ω-categories, for k > 1. We illustrate
this with k = 2, defining 2-monoidal ω-categories as 1-monoidal ω-categories
with a single object, and we assume a suitable notion of computad for those.
Then a computad for 2-monoidal ω-categories is naturally a 1-monoidal cate-
gory with a single object. However, viewed as a 1-monoidal ω-category it is
not a computad. Indeed, any computad must contain at least the monoidal

36

unit object e as well as all its iterated products (e⊗n)n∈N, so no computad
may have a single object. As a result, it is impossible to transcribe the same
ideas for 2-monoidal ω-categories literally. Still, we conjecture that there exists
a dependent type theory for 2-monoidal weak ω-categories, along with a pair
of translations back and forth to the theory MCaTT, and that those transla-
tion compensate the aforementioned obstruction by relying on a strictification
procedure for 1-monoidal weak ω-categories, that strictifies the unit law of the
monoidal product. We think that this construction should be related to the
work of Finster, Reutter and Vicary [16] on strictly unital weak ω-categories,
but we leave this conjecture and the connection between these theories for future
work

We also speculate that weak ω-categories should be compared with an ap-
propriate notion of weak equivalence, that can be described by a structure akin
to a model structure, and similarly for the monoidal weak ω-categories. We have
presented an equivalence between the categories with strict functors, but we ex-
pect this equivalence to lift and provide an equivalence between weak categories
with weak functors. We conjecture that the relevant property in this weakened
world is not having a single object (which is not expected to be invariant under
weak equivalences), but having a 0-connected groupoidal core. Investigation in
this direction to straighten and prove those claims are left for further work.

5 Conclusion
We have developed the type theory MCaTT whose models are monoidal weak
ω-categories. To this end, we rely on an existing type theory describing weak ω-
categories and index the rule of our theory with the rule of the existing theory.
We were then able to prove correctness results, using syntactic translations
between the two theories and lifting the results as a correspondence between
their models.

A forgetful functor. There is another translation from SCaTT to SMCaTT that
we have not presented here. Given a ps-context Γ, we can produce its suspension
ΣΓ, obtained by formally adding two objects and lifting all the dimensions by 1,
in such a way that an object in Γ becomes a 1-cell between the two new objects
in ΣΓ. We can then leverage this operation to define a translation, which gives a
morphism of categories with families u : SCaTT → SMCaTT. The induced functor
on the categories of models

u∗ : Mod (SMCaTT)→Mod (SCaTT)

is the forgetful functor, which, given a monoidal weak ω-category, forgets the
monoidal product and gives the underlying weak ω-category. Importantly, in
this case there is no shift of dimension; the objects of the ω-category are the
objects of the monoidal ω-category, but without the ability to be composed. The
existence of this functor is closely related to the well-definedness of an operation
of suspension in the theory CaTT[9].

37

Alternate presentations of MCaTT. We have worked out different presen-
tations for the theory MCaTT, all of them being centered around the idea of
enforcing the constraint of having a unique object of dimension −1. We give
in [7] two other presentations. The first one is very similar to the one that
we have given here, but the difference is that we do not introduce a type 1 in
MCaTT. The price to pay is that the desuspension becomes a partial operation,
since there is no type to send the type ? to, but this gets compensated by the
fact that the theory can be expressed without definitional equalities and thus
there is no need to carefully work with terms in normal forms. Both these pre-
sentation are relatively close, and none of them really surpasses the other. The
second presentation that we give in [7] encodes all the properties with lists of
contexts. This presentation is more involved and significantly harder to study,
however it gives a syntax that is a bit more concise. It also provides a framework
which is more independent of CaTT, and for which the conditions for construct-
ing the derivation trees are more straightforwardly verified. For these reasons,
we believe that the latter presentation is to be preferred for a potential future
implementation of the theory MCaTT.

Monoidal closed higher categories. It would be valuable to connect the
result we have presented with recent work of Finster for integrating the theory
of monoidal higher categories in the tool Opetopic [14], although it necessitates
to establish a connection between globular and opetopic shapes.

References
[1] Thorsten Altenkirch and Ondrej Rypacek. A syntactical approach to

weak omega-groupoids. In Computer Science Logic (CSL’12)-26th Interna-
tional Workshop/21st Annual Conference of the EACSL. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2012.

[2] Dimitri Ara. Sur les ∞-groupoïdes de Grothendieck et une variante ∞-
catégorique. PhD thesis, Ph. D. thesis, Université Paris 7, 2010.

[3] John Baez. Lectures on n-categories and cohomology. Notes by M. Shul-
man.

[4] John C Baez and James Dolan. Higher-dimensional algebra and topological
quantum field theory. Journal of Mathematical Physics, 36(11):6073–6105,
1995.

[5] Michael A Batanin. Monoidal globular categories as a natural environment
for the theory of weakn-categories. Advances in Mathematics, 136(1):39–
103, 1998.

[6] Thibaut Benjamin. A type theoretic approach to weak ω-categories and
related higher structures. PhD thesis, Institut Polytechnique de Paris, 2020.

38

[7] Thibaut Benjamin. A type theoretic approach to weak ω-categories and
related higher structures. PhD thesis, In preparation, 2020.

[8] Thibaut Benjamin, Eric Finster, and Samuel Mimram. Globular weak ω-
categories as models of a type theory, 2021.

[9] Thibaut Benjamin and Samuel Mimram. Suspension et Fonctorialité: Deux
Opérations Implicites Utiles en CaTT. In Journées Francophones des Lan-
gages Applicatifs, 2019.

[10] Guillaume Brunerie. On the homotopy groups of spheres in homotopy type
theory. arXiv preprint arXiv:1606.05916, 2016.

[11] Albert Burroni. Higher-dimensional word problems with applications to
equational logic. Theoretical computer science, 115(1):43–62, 1993.

[12] Eugenia Cheng and Aaron Lauda. Higher-dimensional categories: an illus-
trated guide book. Preprint, 2004.

[13] Peter Dybjer. Internal Type Theory. In Types for Proofs and Programs.
TYPES 1995, pages 120–134. Springer, Berlin, Heidelberg, 1996.

[14] Eric Finster. Opetopic. https://github.com/ericfinster/opetopic.

[15] Eric Finster and Samuel Mimram. A Type-Theoretical Definition of Weak
ω-Categories. In 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–12, 2017.

[16] Eric Finster, David Reutter, and Jamie Vicary. A type theory for strictly
unital ∞-categories. arXiv preprint arXiv:2007.08307, 2020.

[17] Peter Gabriel and Friedrich Ulmer. Lokal präsentierbare kategorien, volume
221. Springer-Verlag, 2006.

[18] Alexander Grothendieck. Pursuing stacks. unpublished manuscript, 1983.

[19] Tom Leinster. A survey of definitions of n-category. Theory and applications
of Categories, 10(1):1–70, 2002.

[20] Tom Leinster. Higher operads, higher categories, volume 298. Cambridge
University Press, 2004.

[21] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory.
In International Conference on Typed Lambda Calculi and Applications,
pages 172–187. Springer, 2009.

[22] Georges Maltsiniotis. Grothendieck ∞-groupoids, and still another defini-
tion of ∞-categories. Preprint arXiv:1009.2331, 2010.

[23] Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure
and Applied Algebra, 8(2):149–181, 1976.

39

https://github.com/ericfinster/opetopic

[24] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

[25] Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids.
Proceedings of the London Mathematical Society, 102(2):370–394, 2011.

40

https://homotopytypetheory.org/book

A Summary of the type theories

A.1 The type theory G

Syntax.

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either ? or of the form t −→
A
u with A type and t and u terms

Terms: variables

Substitutions: lists 〈x0 7→ t0, . . . , xn 7→ tn〉 with xi variables and ti terms

Inference rules.

For contexts:

∅ `
(ec)

Γ ` A
Γ, x : A `

(ce) Where x /∈ Var(Γ)

For types:
Γ `

Γ ` ?
(?-intro)

Γ ` t : A Γ ` u : A

Γ ` t −→
A
u

(→-intro)

For terms:
Γ ` (x : A) ∈ Γ

Γ ` x : A
(var)

For substitutions:
∆ `

∆ ` 〈〉 : ∅
(es)

∆ ` γ : Γ Γ, x : A ` ∆ ` t : A[γ]

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)
(se)

Semantics.

SG = FinGSetop

Mod (SG) = GSet

A.2 The type theory CaTT
Syntax.

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either ? or of the form t −→
A
u with A type and t and u terms

Terms: either variables or of the form opΓ,A[γ] or cohΓ,A[γ] with Γ a ps-context,
A a type and γ a substitution

Substitutions: lists 〈x0 7→ t0, . . . , xn 7→ tn〉 with xi variables and ti terms

41

Rules for ps-contexts.

(x : ?) `ps x : ?
(pss)

Γ `ps x : A

Γ, y : A, fx −→
A
y `ps f : x −→

A
y

(pse)

Γ `ps f : x −→
A
y

Γ `ps y : A
(psd)

Γ `ps x : ?

Γ `ps
(ps)

Source and target of a ps-context.

∂−i (x : ?) = (x : ?) ∂−i (Γ, y : A, f : x→ y) =

{
∂−i Γ if dimA ≥ i− 1
(∂−i Γ, y : A, f : x→ y) otherwise

∂+
i (x : ?) = (x : ?) ∂+

i (Γ, y : A, f : x→ y) =


∂+
i Γ if dimA ≥ i

drop(∂+
i Γ), y : A if dimA = i− 1

∂+
i Γ, y : A, f : x→ y otherwise

∂−(Γ) = ∂−dim Γ−1Γ ∂+(Γ) = ∂+
dim Γ−1Γ

where drop(Γ) is the context Γ with its last variable removed.

Side conditions.

Γ `ps Γ ` t : A Γ ` u : A

Γ `op t −→
A
u

when
{

Var(t) ∪Var(A) = Var(∂−(Γ))
Var(u) ∪Var(A) = Var(∂+(Γ))

Γ `ps Γ ` t : A Γ ` u : A

Γ `coh t −→
A
u

when
{

Var(t) ∪Var(A) = Var(Γ)
Var(u) ∪Var(A) = Var(Γ)

42

Inference rules.

For contexts :

∅ `
(ec)

Γ ` A
Γ, x : A `

(ce) Where x /∈ Var(Γ)

For types :
Γ `

Γ ` ?
(?-intro)

Γ ` t : A Γ ` u : A

Γ ` t −→
A
u

(→-intro)

For terms :
Γ ` (x : A) ∈ Γ

Γ ` x : A
(var)

Γ `ps Γ `op A ∆ ` γ : Γ

∆ ` opΓ,A[γ] : A[γ]
(op)

Γ `ps Γ `coh A ∆ ` γ : Γ

∆ ` cohΓ,A[γ] : A[γ]
(coh)

For substitutions :
∆ `

∆ ` 〈〉 : ∅
(es)

∆ ` γ : Γ Γ, x : A ` ∆ ` t : A[γ]

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)
(se)

Semantics.

SCaTT : oppoiste of finite computads for weak ω-categories
Mod (SCaTT) : equivalent to the category of weak ω-categories

A.3 The theory G1

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either 1 or of the form t −→
A
u with A type and t and u terms

Terms: variables

Substitutions: lists 〈x0 7→ t0, . . . , xn 7→ tn〉 with xi variables and ti terms

43

Inference rules.

For contexts:

∅ `
(ec)

Γ ` A
Γ, x : A `

(ce) Where x /∈ Var(Γ)

For types:
Γ `

Γ ` ?
(?-intro)

Γ ` t : A Γ ` u : A

Γ ` t −→
A
u

(→-intro)

For terms:
Γ ` (x : A) ∈ Γ

Γ ` x : A
(var)

For substitutions:
∆ `

∆ ` 〈〉 : ∅
(es)

∆ ` γ : Γ Γ, x : A ` ∆ ` t : A[γ]

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)
(se)

Definitional equality :
Γ ` t : A Γ ` A ≡ B

Γ ` t : B

Γ ` t : 1 Γ ` u : 1

Γ ` t ≡ u : 1
(η1)

Semantics.

SG1 = FinGSetop

Mod (SG1) = GSet

A.4 The theory MCaTT
Syntax.

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either 1 or of the form t −→
A
u with A type and t and u terms

Terms: either variables or of the form mopΓ,A[γ] or mcohΓ,A[γ] with Γ a ps-
context, A a type and γ a substitution

Substitutions: lists 〈x0 7→ t0, . . . , xn 7→ tn〉 with xi variables and ti terms

44

Desuspension.

For the context ∅ ` For the context (Γ, x : A) `y∅ = ∅
y(Γ, x : A) =

{ yΓ if A = ?yΓ, x :
yA otherwise

For the type Γ ` ? For the type Γ ` t −→
A
u

y? = ?
y(t −→

A
u) =


? if A = ?yt −−→yA

yu otherwise

For a variable Γ ` x : A For the term ∆ ` opΓ,A[γ] : A[γ]yx = x
yopΓ,A[γ] = mopΓ,A[

yγ]

For the term ∆ ` cohΓ,A[γ] : A[γ]ycohΓ,A[γ] = mcohΓ,A[
yγ]

For ∆ ` 〈〉 : ∅ For ∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)y〈〉 = 〈〉
y〈γ, x 7→ t〉 =

{ yγ if A = ?
〈
yγ, x 7→ yt〉 otherwise

Inference rules.

For contexts :

∅
(ec)

Γ ` A
Γ, x : A `

(ce)

For types :
Γ `

Γ ` 1
(1-intro)

Γ ` A Γ ` t : A Γ ` u : A

Γ ` t −→
A
u

(→-intro)

For terms :
Γ ` (x : A) ∈ Γ

Γ ` x : A
(Var)

Γ `ps Γ `op A ∆ ` γ :
yΓ

∆ ` mopΓ,A[γ] :
yA[γ]

(mop-intro)

Γ `
Γ ` () : 1

(()-intro)
Γ `ps Γ `coh A ∆ ` γ :

yΓ

∆ ` mcohΓ,A[γ] :
yA[γ]

(mcoh-intro)

For substitutions :
∆ `

∆ ` 〈〉 : ∅
(es)

∆ ` γ : Γ Γ ` A ∆ ` t : A[γ]

∆ ` 〈γ, x 7→ t〉 : (Γ, x : A)
(se)

Definitional equality :
Γ ` t : A Γ ` A ≡ B

Γ ` t : B

Γ ` t : 1 Γ ` u : 1

Γ ` t ≡ u : 1
(η1)

Semantics.

• SMCaTT is equivalent to the full subcategory of SCaTT whose objects are
the contexts with a unique variable of type ?.

45

• Mod (SMCaTT) is equivalent to the full subcategory of Mod (SCaTT) that
define a single 0-cell

46

	Type theory for weak -categories
	Type theories: notations and categorical semantics
	Globular sets
	The type theory CaTT

	The type theory MCaTT for monoidal weak -category
	Globular sets with a unit type
	The theory MCaTT

	Syntactic categories of CaTT and MCaTT
	The desuspension functor
	The reduced suspension functor
	Interaction between desuspension and reduced suspension

	Models of the type theory MCaTT.
	Action of reduced suspention and desuspension on the models
	Models of the category SMCaTT
	Interpretation

	Conclusion
	Summary of the type theories
	The type theory G
	The type theory CaTT
	The theory Gbold0mu mumu 11opetopic1111
	The theory MCaTT

