
Invertible cells in ω-categories

Thibaut Benjamin∗ Ioannis Markakis†

May 2, 2024

Abstract

We study coinductive invertibility of cells in weak ω-categories. We
use the inductive presentation of weak ω-categories via an adjunction with
the categroy of computads, and show that invertible cells are closed under
all operations of ω-categories. Moreover, we give a simple criterion for
invertibility in computads, together with an algorithm computing the data
witnessing the invertibility, including the inverse, and the cancellation
data.

1 Introduction

Higher category theory is an emergent field with several newfound applications
in computer science and mathematics. In particular, globular higher groupoids
have been used to describe the structure of identity types in Homotopy Type
Theory [1, 23, 30], establishing a connection with topology, via the Homotopy
Hypothesis. The latter due to Grothendieck [16] states that weak ω-groupoids
are equivalent to topological spaces up to weak homotopy equivalence, and is
an active topic of research with recent progress [18]. Beyond Homotopy Type
theory, globular higher categories have been investigated in connection with
higher dimensional rewriting [26] and topological quantum field theory [3], and
in homology [19].

Higher categories can be described starting from different shapes, and using
several variations on their axioms. They can have various level of strictness,
and can be truncated. Surveys on different definitions of higher categories have
been published by Cheng and Lauda [12], and Leinster [22]. In this article, we
focus on globular weak (∞,∞)-categories, henceforth called ω-categories. Those
were originally introduced by Batanin [4], and then Leinster [21] as algebras for
the monad T defined as the initial contractible operad. Then, Matsiniotis [24]
proposed another definition in terms of models of a globular theory, adapting
an idea due to Grothendieck [16] for ω-groupoids. Those two definition have
been proven equivalent by Ara [2] and Bourke [10]. More recently, Finster and

∗University of Cambridge, tjb201@cam.ac.uk
†University of Cambridge, ioannis.markakis@cl.cam.ac.uk

1



Mimram [14] have proposed a more syntactic definition, seeing ω-categories
as the models of a dependent type theory called catt. Benjamin, Finster and
Mimram [6] have proven this definition to be equivalent to that of Grothendieck
and Maltsiniotis. Inspired by this type theory, Dean et al. [13] have proposed
an equivalent description of the monad T of Batanin and Leinster. They have
constructed a category Comp whose objects are called computads, together with
an adjunction

Free : Glob⇄ Comp : Cell

between globular sets and computads, whose induced monad is the monad T of
Leinster. A direct comparison between the type theory catt and the computads
introduced by Dean et al. has been established by Benjamin, Markakis and
Sarti [8].

Understanding the homotopy theory of ω-categories is one of the major open
problems of higher category. The homotopy theory of strict ω-categories has been
studied by Lafont et al. [20], motivated by its strong connection with homology
and its application to rewriting theory, continuing the work of Squier [28]. In
particular, they have defined a model structure in which computads are the
cofibrant objects, and for which the description of the weak equivalences relies
heavily on the notion of weakly invertible cells. It is conjectured that a similar
model structure should exist for weak ω-groupoids and weak ω-categories. It was
proven by Henry that defining this model structure on ω-groupoids is the missing
piece to prove the homotopy hyptohesis [17]. Partial results in this direction
have been worked out, mainly by Henry and Lanary [18], who have proven the
homotopy hypothesis in dimension 3. On weak ω-categories, a weak factorization
corresponding to the putative cofibrations and trivial fibrations is known. Dean
et al. [13] and Markakis [25] have proven that the computads defined by Dean et
al. are exactly the cofibrant objects for this conjectured model structure.

In this article, we investigate weakly invertible cellls in ω-categories, a notion
used in the characterisation of the weak equivalences for the conjectured model
structure. Such cells have been defined coinductively for a broad class of globular
higher structures by Cheng [11], and studied in the case of strict ω-categories by
Lafont et al. [20]. More recently, Rice [27] has compared this coinductive notion
of invertibility to other proposed notions of invertibility.

Fujii, Hoshino and Maehara [15] have also studied coinductively invertible cells
in ω-categories, and shown that they are closed under all operations. Nonetheless,
our work differs significantly from theirs in various aspects. We use the inductive
presentation of Leinster’s monad by Dean et al [13], which provides us with an
explicit syntax to work with cells of ω-categories. This allows us to give a more
precise version of their main theorem, together with an elementary proof of it.
Our work further provides a syntactic criterion deciding the invertibility of a cell
in a finite dimensional computad, as well as a structurally recursive algorithm
computing the inverse of a cell and the cancellation data attached to it.

The complexity of out work originates from the complexity of weak ω-categories.
To tackle this complexity, we expand the syntax provided by the inductive pre-
sentation of the free ω-category monad with reusable meta-operations that

2



produce new operations from existing ones, continuing our previous work [7].
More precisely, we will use the opposite and suspension operations introduced
there, which amount to interpreting an operation as an operation of the opposite
or hom ω-category respectively. We also introduce two new operations, the
functorialisation,which has only been studied using the type theory catt [5], and
the chain reduction operation. The former relies on the idea that each operation
of ω-categories is functorial, and hence can be applied to higher dimensional cells
as well. The latter, replaces a composition operation with an equivalent more
biased one over a simpler pasting diagram. Finally, to tackle the combinatorial
complexity of computing the invertibility data for a composite of invertible cells,
we further need to introduce some ad-hoc operations, specific to the problem.
Those operations allow us to cancel the composition of a sequence of cells with
their inverses. Due to the shape of the computad they live over, we call those
operations telescopes.

Using those operations, we give an elementary proof that any composite of
invertible cells in an ω-category is again invertible. We believe that the simplicity
of this proof is strong evidence that the syntactic approach to ω-categories is
promising, and can help further develop the theory of ω-categories. Proofs built
using this syntactic presentation can often lead to algorithms, or meta-operations
expanding the language itslef. For example, given a cell in a computad satisfying
our invertibility criterion, our proof gives a recipe to construct its inverse and
the invertible cancellation witnesses. This proceedure has been implemented as
an extension of the proof assistant catt1, based on the dependent type theory
with the same name, dedicated to working in the language of ω-categories. With
this new feature, a user can input a term corresponding to an invertible cell,
and the proof assistant automatically computes the term corresponding to the
chosen inverse, or the term corresponding to any of its invertibility data, more
generally.

Overview of the paper

In Section 2, we recall the notion of globular pasting diagram and define opera-
tions on them making them into a free strict ω-category. Section 3 then recalls
the definition of computads and the free ω-category monad on globular sets
given by Dean et al. [13]. Section 4 is dedicated to defining several constructions
in ω-categories that allow us to expand the language in which we work. In
Section 5, we show our main theorem stating that a composite of invertible cells
is invertible. Finally, Section 6 presents and evaluates the implementation of our
main result in the proof assistant catt.

Acknowledgements

The authors would like to thank Prof. Jamie Vicary for his support during this
project. Furthermore, the second author would like to acknowledge funding from
the Onassis foundation - Scholarship ID: F ZQ 039-1/2020-2021.

1http://www.github.com/thibautbenjamin/catt

3

http://www.github.com/thibautbenjamin/catt


2 Globular pasting diagrams

In this background section, we will recall globular sets and globular pasting
diagrams, the underlying shapes and the arities of the operations of ω-categories
respectively. Globular pasting diagrams are a family of globular sets that has been
studied extensively under different presentations, namely globular cardinals [29],
globular sums [2], or pasting diagams [21]. For a survey of those presentations
and their equivalence, we refer to the work of Weber [31, Section 4]. Here we will
expand on the presentation of Dean et al [13] by also describing the composition
operations of trees in their setting.

2.1 Globular sets

The category G of globes has objects the natural numbers, and morphisms
generated by the cosource and cotarget s, t : n → (n+ 1) under the coglobularity
relations:

s ◦ s = t ◦ s s ◦ t = t ◦ t.

The category Glob of globular sets is the category of presheaves on G. More
explicetely, a globular set X : Gop → Set consists of a set Xn for every n ∈ N
together with source and target functions src, tgt : Xn → Xn+1 satisfying the
globularity relations:

src ◦ src = src ◦ tgt tgt ◦ src = tgt ◦ tgt .

We will call the elements of Xn the n-cells of X. We also define the m-source
and m-target of an n-cell x ∈ Xn for m < n by iterating the source and target
functions:

srck x = = src(· · · (srcx)) tgtk x = = tgt(· · · (tgtx)).

We will say that a pair of n-cells are parallel when they have the same source
and target, where by convention, all 0-cells are parallel.

The n-disk Dn for n ∈ N is the representable globular set G(−, n). The
n-sphere Sn for n ≥ −1 is defined recursively with an inclusion ιn : Sn−1 → Dn

via the following pushout diagram

Sn−1 Dn

Dn Sn

Dn+1

ιn

ιn

s

t

ιn+1

⌜

starting from S−1 = ∅ being the initial globular set. By the Yoneda lemma,
morphisms Dn → X are in natural bijection to n-cells of X, while morphisms

4



Sn → X are in natural bijection to pairs of parallel n-cells of X. Under those
bijections, composition with the inclusion ιn sends a cell to its source and target,
which are parallel by the globularity relations.

Globular pasting diagrams are a family of globular sets defined recursively,
using the suspension and the wedge sum of globular sets. The suspension of a
globular set X is the globular set ΣX with cells given by

(ΣX)0 = {v−, v+} (ΣX)n+1 = Xn.

Its source and target functions are given by those of X, with v− being the
source and v+ being the target of every 1-cell. The wedge sum X ∨ Y of a
pair of globular sets X and Y with respect to chosen 0-cells x−, x+ ∈ X0 and
y−, y+ ∈ Y0 is defined to be the following pushout in Glob:

X ∨ Y

X Y

D0 D0 D0

in1 in2

x− y−x+

⌞

y+

The wedge sum defines a monoidal product in the category of globular sets with
two chosen 0-cells with unit the 0-disk, being the composition of cospans of
globular sets.

2.2 Batanin trees and their positions

Batanin was the first to observe that globular pasting diagrams are indexed
by isomorphisms classes of rooted planar trees and to give a combinatorial
description of them [4]. As explained by Leinster [21], there exists one such tree
of dimension 0, while trees of dimension at most n+ 1 are precisely list of trees
of dimension at most n. This leads to the following inductive definition of rooted
planar trees, which we will call Batanin trees.

Definition 1. The set of Batanin trees is inductively defined by one rule: there
exists a Batanin tree brL for every list L of Batanin trees.

The rule specifies that the set Bat of Batanin trees is equipped with a function
br : List(Bat) → Bat where List is the free monoid endofunctor

ListX =
∐
n∈N

Xn.

Being inductively generated by this rule means precsely that the pair (Bat, br)
is the initial algebra for the endofunctor List. In particular, there exists a tree
br[] corresponding to the empty list, and using this tree, we can define more
complicated trees, such as the tree

B = br[br[br[], br[]], br[]].

5



We visualise those trees by letting brL be the tree with a new root and with
branches given by L. For example, br[] is the tree with one vertex and no
branches, while the tree B above can be visualised as follows:

• •

• •

•

The dimension of a Batanin tree is the height of the corresponding planar tree,
or equivalently the maximum of the dimension of its positions, defined below. It
can be computed recursively by

dim(br[B1, . . . , Bn]) = max(dimB1 + 1, . . . , dimBn + 1).

In particular, br[] is the unique Batanin tree of dimension 0.

Definition 2. The globular set of positions of a Batanin tree B is the globular
set Pos(B) defined inductively by the formula

Pos(br[B1 . . . , Bn]) =

n∨
i=1

ΣPos(Bi).

This is the globular pasting diagram corresponding to the planar tree B as
explained by Leinster [21, Appendix F.2]. The positions of a Batanin tree
correspond to sectors of the corresponding planar tree [9]. For example, the
globular set of positions of the tree B above is the following one

a• b•

g
• k•

y
•

f h

x z

x•
y
• z•

f

g

h

k

Here the positions f, g, h, a, b are the positions of the left branch br[br[], br[]],
while k is the position of theright branch br[]. The 0-positions x, y, z are the new
cells created by the suspension operation.

Definition 3. A position p ∈ Posk(B) of a Batanin tree B will be called locally
maximal when it is not the source, nor the target of another position. It will be
called maximal when k = dimB.

One can show by induction that the set Posk(B) of k-positions of a Batanin tree
B is empty if and only if k > dimB, so maximal positions are locally maximal.

6



Moreover, the locally maximal positions of a tree can be defined recursively by
letting the unique position of br[] be locally maximal, and letting the position
inj(p) of br[B1, . . . , Bn] be locally maximal when p is locally maximal in Bj ,
where inj is the inclusion of the j-th summand in the wedge sum

inj : ΣPos(Bj) →
n∨

i=1

ΣPos(Bi).

Example 4. The suspension of a Batanin tree B is the tree ΣB = br[B]. By
construction, ΣPos(B) = Pos(ΣB), so globular pasting diagrams are preserved
by the suspension operation.

Example 5. Representable globular sets are globular pasting diagrams. More
specifically, we can define recursively on n ∈ N a tree Dn together with an
isomorphism Pos(Dn) ∼= Dn. We start by letting D0 = br[] and the isomorphism
being the identity of D0, and then proceed to define Dn+1 = ΣDn and the
isomorphism to be the composite

Pos(Dn+1) = ΣPos(Dn) ∼= ΣDn ∼= Dn+1

where the last isomorphism sends the unique top-dimensional cell of Dn to the
unique top-dimensional cell of Dn+1.

2.3 Operations on pasting diagrams

Globular pasting diagrams famillialy represent the free strict ω-category monad.
In this section, we will describe the free strict ω-category on a globular set, and
discuss briefly the monad mutliplication.

Definition 6. The k-boundary of a Batanin tree B for k ∈ N is the Batanin
tree defined recursively by the following formulae

∂0 br[B1, . . . , Bn] = br[]

∂k+1 br[B1, . . . , Bn] = br[∂kB1, . . . , ∂kBn]

On the level of rooted, planar trees, one can show inductively that the tree ∂kB
is obtained from B by removing all nodes of distance at least k from the root. In
terms of pasting diagrams, it is obtained by removing all positions of dimension
above k and identifying parallel k-positions. It follows that the positions of the
k-boundary can be included back into the positions of the original tree in two
ways by picking the left-most and right-most position for every branch. More
formally, the k-cosource and k-cotarget

sBk , t
B
k : Pos(∂kB) → Pos(B)

are defined recursively for a tree B = br[B1, . . . , Bn] by the following formulae:

sB0 = in1(v−) tB0 = inn(v+)

sBk+1 =

n∨
i=1

Σ sBi

k tBk+1 =

n∨
i=1

Σ tBi

k .

7



As the name suggests, the k-cosource and k-cotarget satisfy the coglobularity
relations. Considering our example Batanin tree B, we have that

∂1B =

• •

•

Pos(∂1B) =
x•

y
• z•f k

The source inclusion sB1 is the one given by the names of the positions, while
the target inclusion tB1 is the one sending f to h and the other positions to the
ones with the same name.

Remark 7. To simplify the notation, we will denote by ∂B the boundary
∂dimB−1B, and we will denote the corresponding source and target inclusions by
sB and tB respectively.

Definition 8. The k-composition of a pair of Batanin trees B and B′ sharing
a common k-boundary is the Batanin tree B ∗k B′ defined recursively by the
formulae

br[B1, . . . , Bn] ∗0 br[B′
1, . . . , B

′
m] = br[B1, . . . , Bn, B

′
1, . . . , B

′
m]

br[B1, . . . , Bn] ∗k+1 br[B
′
1, . . . , B

′
n] = br[B1 ∗k B′

1, . . . , Bn ∗k B′
n]

We observe first that those equations completely determine the composition
of Batanin trees, since for a pair of Batanin trees brL and brL′ to share a
common positive-dimensional boundary, the lists L and L′ must have the same
lenght. The composition of a pair of Batanin trees along a common k-boundary
amounts to appending the branches of the two trees at every node of distance
k from the root. On the level of pasting diagrams, it realises the gluing of the
corresponding pasting diagrams along their common boundary, as will be shown
in Proposition 9. For example, consider the Batanin trees

B = br[br[], br[br[br[]], br[br[], br[]]]]

B′ = br[br[], br[br[br[], br[br[]]], br[]]]

THey share a common 2-boundary, which is the tree

∂2B = ∂2B
′ = br[br[], br[br[], br[]]]

and theie 2-composition is the following tree

B ∗2 B′ = br[br[], br[br[br[], br[], br[br[]]], br[br[], br[]]]].

8



This process may be visualised as follows:

• • •

• •

• •

•

∗2

•

• •

• •

• •

•

=

•

• • • • •

• •

• •

•

Proposition 9. For every k ∈ N and every pair of Batanin trees B and B′

sharing a common k-boundary, there exists a pushout square of the form

Pos(∂kB) Pos(∂kB
′) Pos(B′)

Pos(B) Pos(B ∗k B′)

tBk

sB
′

k

in+
k,B,B′

in−
k,B,B′

Proof. We will construct this pushout diagrams by induction on the Batanin
trees B = br[B1, . . . , Bn] and B′ = br[B′

1, . . . , B
′
m] and on k ∈ N. We define

first in−0,B,B′ be the morphism induced by the inclusions in1, . . . , inn of the

components of the wedge sum, and in+0,B,B′ be the morphism induced by the
inclusions inn+1, . . . , inn+m. The resulting square is a pushout by the definition
and associativity of the wedge sum operation. We then define recursively

in±k+1,B,B′ =

n∨
i=1

Σ in±k,Bi,B′
i
.

The resulting square is a pushout, since both the wedge sum and the suspension
operations preserve connected colimits; the former because it factors as a left
adjoint Glob → Glob∗∗ [7, Section 2] followed by the forgetful functor from
bipointed globular sets to globular sets, and the latter by distributivity of
colimits over colimits.

Definition 10. The free strict ω-category on a globular set X is the strict
ω-category F strX consists of the globular set

(F strX)n =
∐

dimB≤n

Glob(Pos(B), n)

with source and target functions given by

srck(B, f) = (∂kB, f ◦ sBk ) tgtk(B, f) = (∂kB, f ◦ tBk ),

9



with identity operations given by the obvious subset inclusions, and with compo-
sition operations given by

(B, f) ∗k (B′, f ′) = (B ∗k B′, ⟨f, f ′⟩).

where ⟨f, f ′⟩ is the morphism out of the pushout of Proposition 9.

It is out of the scope of this paper to show that F strX is a strict ω-category.
Nonetheless, we will use freely that the operations ∗k are associative and unital,
and that they satisfy the interchange law, since those propoerties have been
shown for example by Leinster [21, Appendix F.2]. An alternative way to prove
those axioms is to restate them as equations between the cosources, cotargets,
and the pushout inclusions, and show them by induction on the trees involved.

As the name suggests, the functor F str is left adjoint to the underlying
globular set functor U str forgetting the identity and compoosition operations of a
strict ω-category. We will denote the induced monad by T str : Glob → Glob. As
an endofunctor, T str is famillially represented by the collection of Batanin trees,
so it is cartesian, finitary and coproduct preserving [21, Theorem F.2.2]. The unit
of the monad ηstr : id → T str is the natural transformation, whose component
at a globular set X, sends an n-cell x ∈ Xn to morphism Pos(Dn) → Dn → X,
where the first morphism is the isomoprhism of Example 5 and the second is
obtained by the Yoneda lemma. The monad multiplication is described by the
following proposition of Weber [31, Proposition 4.7].

To state the proposition, we observe that the free strict ω-category on the
terminal globular set T str1 has as n-cells Batanin trees of dimension at most
n, and it has the k-boundary as its k-source and k-target function, so we will
denote it by Bat when no confusion may arise. The assignment of the globular
set of positions of a Batanin tree can be seen as a functor

Pos : ∫ Bat → Glob .

from the category of elements of Bat sending an object (n,B) to the globular set
Pos(B), and the generating morphisms s, t : (n, ∂nB) → (n+ 1, B) to sBn and tBn
respectively.

Proposition 11. Let f : Pos(B) → Bat a morphism of globular sets. Then
there exists a Batanin tree µstr

1 (f) of dimension at most dimB such that

Pos(µstr
1 (B, f)) = colim

(k,p)∈∫ Pos(B)
Pos(fk(p))

we will denote the canonical cocone by jf : Pos ◦ ∫ f ⇒ Pos(µstr
1 (B, f)). Moreover,

this construction commutes with cosource and cotargets.

A cell of x ∈ T strT strX is a pair (B, f) where f : Pos(B) → T strX. Writting
f(p) = (f1(p), f2(p)) where f1(p) is a Batanin tree and f2(p) : Pos(f1(p)) → X,
we see that f is a morphism of globular sets if and only if f1 is a morphism and f2

is a cocone Pos ◦ ∫ f1 ⇒ X. The monad multiplication µstr
X : T strT strX → T strX

is then given by
µstr
X (B, f) = (µstr

1 (B, f1), ⟨f2⟩)

10



where ⟨f2⟩ is the morphism out of the colimit induced by the cocone f2. The
last part of Proposition 11 ensures that each µstr

X is a morphism of globular sets.

3 Weak ω-categories

As seen from Definition 10, strict ω-categories are globular sets equipped with a
unique way to compose diagrams of cells indexed by a globular pasting diagram.
Weak ω-categories are a generalisation, in which such diagrams admit a unique
composite up to an invertible higher cell. Following Leinster [21], we define
weak ω-categories as algebras for certain monad on globular sets, the initial
contractible globular globular operad. We will use the description of this monad
given by Dean et al. [13], in terms of an adjunction

Free : Glob⇄ Comp : Cell

with the category Comp of computads. In this section, we recall this description
of the ω-category monad, and certain operations on ω-categoriesa and their
computads that were introduced in our previous work [7].

3.1 Computads

Computads are generating data for ω-categories, and they are defined by induc-
tion on the dimension n ∈ N. More precisely, we define mutually inductively the
category Compn of n-computads together with four functors

Freen : Glob → Compn Celln : Compn → Set

un : Compn → Compn−1 Spheren : Compn → Set

three natural transformations

bdryn : Celln ⇒ Spheren−1 un pr1, pr2 : Spheren ⇒ Celln

and an auxilliary subset Fulln(B) ⊆ Spheren Freen(Pos(B)) of spheres for every
Batanin tree B that we will call full. The functor un forgets the top-dimensional
generators of a computad. The functor Freen views a globular set as a computad
whose generators are its cells. The functor Celln returns the n-cells of the
ω-category generated by the computad, while the functor Spheren returns pairs
of parallel n-cells. The projections pri pick the first and second cell of a parallel
pair, while the natural transformation bdryn assigns to each cell its source and
target. For the base case, we let Comp−1 be the terminal category and Sphere−1

the functor picking the terminal set.
An n-computad is a triple (Cn−1, V

C
n , ϕC

n ) consisting of an (n−1)-computad, a
set of n-generators and an attaching function V C

n → Spheren−1(Cn−1), assigning
to each generator a source and target. A morphism of computads f : C → D
is a morphism between the ω-categories generated by the computads, and it is
defined to be a pair (fn−1.fV ) of a morphism Cn−1 → Dn−1 together with a

11



function V C
n → Celln(D) preserving the source and target, in that the following

diagram commutes

V C
n Celln(D)

Spheren−1(Cn−1) Spheren−1(Dn−1)

fV

Spheren−1(fn−1)

ϕC
n

bdryn,D

The truncation functor is the first projection on both objects and morphsisms.
The set Celln C is defined inductively by two rules. The first states that every

generator v ∈ V C
n gives rise to a cell that we denote by var c. The second rule

states that there exists a cell coh(B,A, f) for every Batanin tree B of dimension
at most n, every full A ∈ Fulln−1(B) and every morphism f : Freen Pos(B) → C.
The boundaries of those cells are defined recursively by

bdryn(var v) = ϕC
n (v) bdryn(coh(B,A, f)) = Spheren−1(fn−1)(A)

Notice that the definition of morphisms uses cells and vice versa. This apparent
circularity is resolved using induction-recursion, i.e. reading the definitions
above as the description the initial algebra for some polynomial endofunctor [13,
Section 3.3].

Composition with a morphism f : C → D and its action on cells are defined
mutually recursively by

Cell(f)(var v) = fV (v)

Cell(f)(coh(B,A, g)) = coh(B,A, f ◦ g)
f ◦ g = (fn−1 ◦ gn−1,Celln−1(fn−1) ◦ gn−1)

together with a proof that bdryn is natural. Using mutual induction, we can
then show that this composition operation is associative and unital, and that
Celln is a functor.

The free functor Freen sends a globular set X to the n-computad consisting
of Freen−1 X, the set Xn and the attaching function given by

ϕFreeX
n (x) = (var srcx, var tgtx).

It sends a morhpism of globular sets f : X → Y to the morhpism of n-computads
consisting of Freen−1 f and the function var ◦fn. The functor of n-spheres
together with the projection natural transformations are defined via the following
pullback square

Spheren Celln

Celln Spheren−1 un

pr1

pr2

⌜

bdryn

bdryn

that is an n-sphere is a pair of n-cells with the same boundary. We will often
denote such a pair (a, b) ∈ Spheren(C) by a → b, and write c : a → b to denote
that a cell c ∈ Celln+1(C) has boundary (a, b).

12



To conclude the induction, it remains to define when an n-sphere of a Batanin
tree B is full. To do that, we define the support of a cell c ∈ Celln(C) to be
the set of generators appearing in c. More formally, the support of c is defined
recursively by

suppn(var v) = {v} suppn(coh(B,A, f)) =
⋃

p∈Posn(B)

suppn(fV (p))

and then a sphere (a, b) ∈ Spheren(Freen(Pos(B))) is declared to be full when the
support of a consists of the n-positions in the image of sBn and the support of b
consists of the n-positions in the image of tBn . Moreover, if n > 0, we require that
the (n− 1)-sphere bdryn(a) = bdryn(b) is also full. Full spheres amount to ways
to compose the boundary of a globular pasting diagram when n = dimB − 1,
and they amount to pairs of parallel ways to compose the whole diagram when
n ≥ dimB.

The category of computads is then defined to be the limit of the forgetful
functors un, so a computad C = (Cn)n∈N is a sequence of n-computads such
that un+1Cn+1 = Cn. The free functors Freen : Glob → Compn are compatible
with the forgetful functors, so they give rise to a functor

Free : Glob → Comp .

In the opposite direction, we may define a functor

Cell : Comp → Glob

sending a computad C to the globular set with cells given by Celln(Cn) and with
source and target functions given by the composition of the boundary natural
transformation bdryn with the projections pri. The functor Free is left adjoint
to Cell. The unit η of the adjunciton is given by the morphisms of globular sets

ηX : X → Cell Free(X)

sending x ∈ Xn to the generator cell var x. The counit ε consists of the morphisms
of computads

εC : Free CellC → C

determined by the identity functions

V Free CellC
n = Celln C

The triangle equations for this adjunction can be easily checked.

Remark 12. The inductive fullness condition above is equivalent to the following
one, as shown by Dean et al [13]. We can define more generally for a cell
c ∈ Celln(C) its k-support suppk(c) to be the set of k-dimensional generators
used in the definition of c, or its source and target. We will say that c covers
C when its support contains every generator of C. We then say that a sphere
A = (a, b) ∈ Spheren(Free Pos(B)) is full if and only if the support of a is the
image of sBn and that of b is the image of tBn . This is equivalent in turn to
a = T (sBn )(a

′) and b = T (tBn )(b
′) for cells a′, b′ ∈ (T Pos(∂nB))n that cover

Free Pos(∂nB).

13



3.2 Operations in ω-categories

Having defined the adjunction between computads and globular sets, we may
now define ω-categories. This definition is equivalent to the one of Leinster, as
shown by Dean et al [13].

Definition 13. The free weak ω-category monad (T, η, µ) is the monad induced
by the adjunction Free ⊣ Cell. The category Catω of (weak) ω-categories is the
category of T -algebras.

By definition, an ω-category is a pair X = (X,α : TX → X) satisfying an
associativity and a unit axiom. In particular, for every Batanin tree B and every
cell c ∈ (T Pos(B))n, there exists an operation

cX : Glob(Pos(B), X) → Xn

cX(f) = (α ◦ Tf)(c)

that is natural in that for every morphism of ω-categories g : X → Y,

g(cX(f)) = cY(Ug ◦ f).

It was shown by the second author [25] that those operations, and more specifi-
cally the operations of the form

cohX(B,A,−) = coh(B,A, id)X

fully determine the structure morphism α and that they can be chosen freely
subject to source and target conditions. We will call such operations compositions
when dimB = n and coherences when dimB < n.

Utilizing the idea that natural operations in an ω-category with arity the
pasting diagram Pos(B) correspond to elements of T Pos(B), to define composi-
tion and identity operations in an ω-category, we will construct a family of cells
over pasting diagrams. More precisely, we define recursively for every Batanin
tree B and every natural number n, a full n-sphere AB,n ∈ Fulln(B), and we
define a cell compn,B with boundary AB,n−1 when n ≥ dimB by

compB,n =

{
var(idn) when B = Dn

coh(B,AB,n−1, id) otherwise

AB,n = (T (sBn )(comp∂nB,n), T (t
B
n )(comp∂nB,n))

The identity of an ω-category X is the operation

idXn = compXDn,n+1 : Xn
∼= Glob(Pos(Dn), X) → Xn+1

taking a cell x ∈ Xn to a cell with source and target x. The unbiased composition
over a tree B is the operation

compXB = compXB,dimB : Glob(Pos(B), X) → XdimB ,

14



taking a diagram f : Pos(B) → X to a cell with source and target the unbiased
composite of f ◦ sB and f ◦ tB respectively. In particular, for the Batanin tree
B = Dn0

∗k1
. . . ∗km

Dnm
, a morphism f : Pos(B) → X amounts to a sequence

of cells xi ∈ Xni
such that xi and xi+1 are ki+1-composable and we will write

the unbiased composite of f as

compXB(f) = x0 ∗k1
. . . ∗km

xm

omitting the index ki when dimxi = dimxi+1 = k + 1.

3.3 Suspensions and opposites

Constructing high-dimensional operations of ω-category, or equivalently cells
over a globular pasting diagram, tends to be a difficult task, leading us to
introduce meta-operations that produce new such cells from existing ones. In
our previous paper [7], we introduced two such meta-operations, the suspension
and the opposite. The former is obtained by interpreting an operation in the
hom ω-categories of an ω-category, while the latter is obtained by interpreting it
in its opposites, introduced in the same paper.

More formally, we define mutually recursively the suspension of a computad
Σ : Comp → Comp extending the one for globular sets, together with a natural
transformation

Glob Comp Glob

Glob Comp Glob

Free

Σ

Cell

Σ Σ

Free Cell

ΣCell

by the following recursive formulae

(ΣC)0 = {v−, v+} (ΣC)n+1 = ((ΣC)n, V
C
n , (ΣCell,ΣCell) ◦ ϕC

n )

(Σ f)0 = id (Σ f)n+1 = ((Σ f)n,Σ
Cell ◦ ◦ fV,n)

ΣCell(var v) = var v ΣCell(coh(B,A, f)) = coh(ΣB, (ΣCell,ΣCell)A,Σ f)

The suspension operation allows us to take an operation in the form of a cell
c ∈ (T Pos(B))n and produce a new operation ΣCell(c) ∈ (T Pos(ΣB))n+1 of
higher dimension. For example, suspensing the unbiased composition over the
tree Chaink = D1 ∗0 · · · ∗0D1, we obtain the unbiased composition operation over
the tree Σn Chaink = Dn+1 ∗n · · · ∗nDn+1, which corresponds to the composition
of k consecutive (n+ 1)-cells.

To define the opposite of a computad, we proceed similarly. Given a set of
positive natural numbers w ∈ N>0, we may define an autoequivalence

op : Glob → Glob

by swapping the source and target of every n-cell of a globular set when n ∈ w.
This operation preserves globular pasting diagrams, in the sense that there exists
an automorphism op : Bat → Bat together with isomorphisms opB : Pos(opB) →

15



opPos(B) for every Batanin tree B compatible with the source and taregt
inclusions. We then extend op to an autoequivalence of the category of computads
op : Comp → Comp together with a natural isomorphisms

Glob Comp Glob

Glob Comp Glob

Free

op

Cell

op op

Free Cell

opCell

by similar recursive formulae as above:

(opC)n = ((opC)n−1, V
C
n , swapn ◦(opCell, opCell)ϕC

n )

(op f)n = ((op f)n−1, op
Cell ◦fV,n)

opCell(var v) = var v

opCell(coh(B,A, f)) = coh(opB,A′, (op f) ◦ Freen(opB))
A′ = (T (opBw)

−1, T (opBw)
−1) ◦ swapn ◦(opCell, opCell)A

where swapn swaps the two components of the pullback when n+ 1 ∈ w and it
is the identity otherwise. The opposite operation allows us to take an operation,
e.g. an unbiased composition, and construct a new operation over the pasting
diagram with all the cells reversed. For example, the {1}-opposite of the pasting
diagram B = D1 ∗0 D2 is the pasting diagram opB = D2 ∗0 D1. The unbiased
composition over B is the left whiskering of an 1-cell with an 2-cell, and it is
sent to the unbiased composite over opB which is the right whiskering.

3.4 Invertible and equivalent cells

A crucial notion in the study of higher categories is that of equivalence. This is
usually defined by induction on the dimension of the structure: two elements
of a 0-category are equivalent when they are equal, while two objects x, y in
an (n+ 1)-category are equivalent when there exist morphisms f : x → y and
g : y → x such that the compositions f ◦ g and g ◦ f are equivalent to identities
in the respective n-categories of morphisms. In such case, we say that the
morphisms f and g are invertible. This definition of equivalence fails may be
also used for ω-categories if interpreted coinductively, as observed by Cheng [11]:

Definition 14. The collection of invertible cells of an ω-category X is defined
coinductively by saying that a positive-dimensional cell x : u → v ∈ Xn+1 is
invertible if there exists a cell x−1 : v → u, together with a pair of invertible cells

ux : x ∗n x−1 → idn(u) vx : x
−1 ∗n x → idn(v).

We say that a pair of cells c, c′ ∈ Xn are equivalent and write c ∼ c′ when there
exists an invertible cells with source c and target c′.

The general semantics of coinduction is beyond the scope of this article. To
explain the definition, let X = ⊔nXn+1 the set of all positive-dimensional cells

16



of X, and consider the endofunction F sending a subset U ⊂ X to the set of
cells x ∈ X for which there exist x−1 ∈ X and ux, vx ∈ U satisfying the same
boundary conditions as in Definition 14. The function F is monotone, so by
Tarski’s fixed point theorem, it has a greatest postfixed point W , which we will
call the set of invertible cells of X. By definition, it is the maximum set such
that W ⊂ F (W ). This provides a method for proving invertibility of a set of
cells U : it suffices to show that U ⊆ F (U) to conclude that U ⊆ W . We will use
this method to show for example that coherence operations produce invertible
cells.

Lemma 15. The relation ∼ is symmetric and preserved by every morphism.

Proof. Let X be an ω-category and c ∼ c′ be equivalent cells. Then there exists
an invertible cell x with source c and target c′. The inverse x−1 is again invertible

with (x−1)
−1

= x, ux−1 = vx and vx−1 = ux. Its source is c′ and its target is c,
so c′ ∼ c. Therefore, the relation ∼ is symmetric.

To show that a morphism f : X → Y preserves equivalence, we will show
coinductively that it preserves invertibility. More precisely, let U the set of
cells of Y that are the image of some invertible cell of X. Then for every cell
y ∈ U , there exists some invertible cell x of X such that f(x) = y. Then we may
define y−1 = f(x−1) and uy = f(ux) ∈ U and vy = f(vx) ∈ U . This shows that
U ⊂ F (U), so every cell of U is invertible in Y.

Proposition 16. Let B be a Batanin tree and A ∈ Fulln−1(B) be a full sphere
such that dimB < n. Then for every ω-category X and every morphism of
globular sets f : Pos(B) → X, the coherence cell cohX(B,A, f) is invertible.

Proof. We will first show coinductively that for a Batanin tree B, the set of
cells U of the form coh(B,A, id) for some full sphere A ∈ Fulln−1(B) such that
dimB < n consists of invertible cells. For that, let x = coh(B,A, id) ∈ Xn

be such a cell and let A = (u, v). By the assumption on the dimension of
A, the n-spheres (u, u), (v, v) and (v, u) are all full, so we may define the
inverse cell x−1 = coh(B, (v, u), id). The support of the cells x ∗n−1 x

−1, idn(u),
x−1 ∗n−1 x and idn(v) are empty, since B has no positions of dimension n, and
their boundaries are full as explained above. Therefore, we may also define the
cells

ux = coh(B, x ∗n−1 x
−1 → idn(u), id) ∈ U

vx = coh(B, x−1 ∗n−1 x → idn(v), id) ∈ U.

By coinduction, it follows that every cell in U is invertible.
Let now X = (X,α) be an ω-category and f : Pos(B) → X be a morphism

of globular sets. Then Tf : T Pos(B) → TX is a morphism of free ω-categories
F Pos(B) → FX, and α : TX → X is a morphism FX → X, hence the cell

cohX(B,A, f) = (α ◦ Tf)(coh(B,A, id))

is the image of an invertible cell under a morphism of ω-categories. It follows by
Lemma 15 that cohX(B,A, f) is invertible.

17



Corollary 17. The relation ∼ is reflexive.

Proof. The corollary follows by invertibility of identity cells.

4 Constructions in weak ω-categories

This section is dedicated to expanding our toolbox to work with ω-categories.
We extend the language of computads with additional constructions, defining
simpler ways to describe some of the cells.

4.1 Unbiased unitors

We first define a family of cells that we call the unbiased unitors. Intuitively,
those are cells which take composite of identities onto an identity. More formally,
a composite of identities is a composite where all top-dimensional cells are
identities. In order to define those precisely, we rely on the following result.

Lemma 18. For a Batanin tree B and every n ∈ N, the source and target
inclusions sBn , t

B
n : Pos(∂nB) → Pos(B) induce bijections between positions of

dimension k < n. Moreover, they are injective on positions of dimension n, and
for every position p ∈ Posn(B), there exists unique position q ∈ Posn(B) such
that sBn (q), t

B
n (q) and p are parallel.

Proof. The proof is by straightforward induction on the tree and on n. It can
be seen also from the pictorial description of trees and their positions.

Consider a Batanin tree B of dimension d. Using Lemma 18 we define the map
id : Free Pos(B) → Free Pos(∂d−1B), defined recursiveley as follows:

• To each position p of dimension k < d− 1, it assigns the cell var q, where q
is the preimage of p

• To each position p of dimension d− 1, it assigns the cell var q, where q is
the unique position such that sBd−1(q) and p are parallel

• To each position p of dimension d, it assigns the cell id(id(src p))

By construction, it follows that id is a common retraction of the source and
target inclusions:

id ◦ Free(sBd−1) = id ◦ Free(tBd−1) = idFree Pos(∂B)

Definition 19. Consider a Batanin tree B of dimension d together with a cell
a ∈ (T Pos(∂d−1B))d−1 that covers ∂d−1B. The unbiased unitor unitor(B, a) is
the cell

unitor(B, a) = coh(∂B, u → v, idPos(∂d−1B)) ∈ (T Pos(∂B))d

where

u = coh(B, T (sBd−1)(a) → T (tBd−1)(a), id) v = id(a)

18



The assumption on the support of a implies that both u and v are well-defined
cells, while the two cells are parallel by the computation of the source and target
of id. The cell acts as a unitor, since it takes a composite over B where all top
dimensional cells are sent to identities to the identity of the composite.

4.2 Filler cells

We define a collection of coherence operations, that we call fillers, generalising
the associators, unitors and interchangers. Those are operations in ω-categories,
that we describe again using cells over a globular pasting diagram. Recall that
given a diagram of Batanin trees f : Pos(B) → Bat indexed by a Batanin tree
B, we may form the composite tree µstrf .

Definition 20. Suppose that for each i ∈ {1, 2}, we are given

• a Batanin tree Bi,

• morphisms fi : Pos(Bi) → Bat such that µstr(f1) = µstr(f2),

• full spheres Ai in Pos(Bi)

• covering morphisms σi : Free Pos(Bi) → Free Pos(µstr(fi)) such that

Sphere(σ1)(A1) = Sphere(σ2)(A2)

we define the filler cell

fill(Bi, fi, ai → bi, σi) = coh(µstr(f1), c1 → c2, id)

where

c1 = coh(B1, A1, σ1) c2 = coh(B2, A2, σ2).

The assumptions on Ai and σi ensure exactly that the cells c1 and c2 are cell
defined, parallel and covering the tree µstr(fi). By Proposition 16, all the fillers
are all invertible cells.

Example 21. The associator with source is three binary composed 1-cells, associ-
ated on the left and its target is three binary composed 1-cells, associated on
the right can be obtained as a filler with:

• The tree B1 = D1 ∗0 D1, the map f1 = ⟨D1 ∗0 D1, D1⟩, the cells a1 = var p
and b1 = var q where p, q are respectively the left- and right-most 0-positions
of B1, and the morphism σ1 = ⟨compD1∗0D1

, idD1⟩,

• The tree B2 = D1 ∗0 D1, the map f2 = ⟨D1, D1 ∗0 D1⟩, the cells a2 = var p
and b2 = var q where p, q are respectively the left- and right-most 0-positions
of B2, and morphism σ2 = ⟨idD1 , compD1∗0D1

⟩.

Example 22. The unbiased unitor u(B, a) can also be obtained as a filler, by
choosing:

19



• The tree B1 = B, the map f1 associating to every position p the tree
Dmin(dim p,dimB−1), the cells a1 = T (sBd−1)(a) and a2 = T (tBd−1)(a), and the
map σ1 = id.

• The tree B2 = DdimB−1, the map f2 associating to every position p the
tree ∂dim pB, the cells a2 = b2 = var p where p is the unique maximap
position of DdimB−1, and the map σ2 corresponding to the cell a via the
Yoneda lemma.

4.3 Functorialisation of coherences

Given a Batanin tree B of dimension d together with a set X ⊆ Posd(B) of
maximal positions of B (c.f. Definition 3), we define the functorialisation of the
tree B with respect to the set X by induction on B, denoted B ↑ X as follows

B ↑ ∅ = B

(br[]) ↑ X = br[br[]]

(br[B1, . . . , Bn]) ↑ X = br[B1 ↑ (in−1
1 (X)), . . . , Bn ↑ (in−1

n (X))]

Intuitively, this operation consists in selecting a set of leaves of the tree, and
growing one more branch on top of all the selected leaves. For instance, consider
the tree displayed on the left. The functorialisation of this tree with respect to
the set of locally maximal positions indicated as red produces the tree represented
on the right. The newly created branches are also displayed in red, to improve
legibility.

• • •

• •

•

⇝

• •

• • •

• •

•

Consider for instance the Batanin tree Chaink = D1 ∗0 . . . ∗0 D1 and the position
fChain
i . Then the functorialisation is given by

Chaink ↑ fChain
i = D1 ∗0 . . . ∗0 D1 ∗0 D2 ∗0 D1 ∗0 . . . ∗0 D1,

where in this expression, the disk D2 appears in the i-th position.

Lemma 23. For a Batanin tree B of dimension d, and a non-empty set X
of maximal positions in B, the dimension of the functorialisation is given by
dim(B ↑ X) = d+ 1, and we have ∂d(B ↑ X) = B.

Proof. We proceed by induction on B: If B = br[], then dimB = 0 and
dim(B ↑ X) = dim(D1) = 1, and moreover, ∂0(B ↑ X) = B. IfB = br[B1, . . . , Bn],

20



then dimB = 1+max (dimBi), and dim(B ↑ X) = 1 +max (dim(Bi ↑ in−1
i (X))).

By induction, we have dim(Bi ↑ in−1
i (X)) = 1 + dimBi if in

−1
i (X) is non-empty,

and dimBi otherwise. Moreover, since X contains at least one maximal position
of B there exists at least one i such that in−1

i (X). We then have necessarily
1+dimBi = dimB, and thus dim(B ↑ X) = 1+dimB. Moreover, denote dimB =
d, we have ∂d(B ↑ X) = br[∂d−1(B1 ↑ in−1

1 (X)), . . . , ∂d−1(Bn ↑ in−1
n (X))]. For

every i such that in−1
i (X) ̸= ∅, we have by induction ∂d−1(Bi ↑ in−1

i (X)) = Bi.
Moreover, if in−1

i (X) = ∅, then Bi ↑ in−1
i (X) = Bi is of dimension at most d− 1

and ∂d−1Bi = Bi. Hence ∂d(B ↑ X) = B.

Definition 24. Given a Batanin tree B with a set X of maximal positions, we
define the globular set Pos(B)\X by letting (Pos(B)\X)n = Posn(B)\X, with
the source and target maps the restriction of those of Pos(B).

Lemma 25. Given a Batanin tree B of dimension d with a set X of maximal
positions, there exits a colimit cocone of the form

Pos(B)

∐
x∈X

Dd

Pos(B) \X
∐

x∈X

Dd+1 Pos(B ↑ X)

∐
x∈X

Dd

Pos(B)

sB↑X
d

⟨x⟩

⟨s
Dd+1
d ⟩

⟨x⟩

⟨t
Dd+1
d ⟩

tB↑X
d

The unnamed morphism picks the generators corresponding to the newly grown
branches of the functorialised tree.

The proof of the lemma is by a straightforward induction on the tree B.
This gives a method for constructing a map σ : Pos(B ↑ X) → Y : Such a map
amounts to a pair of maps σ−, σ+ : Pos(B) → Y which coincide on Pos(B) \X
as well as, for every x ∈ X, a cell fx ∈ Yn+1 such that src(fx) = σ−(x) and
tgt(fx) = σ+(x).

Remark 26. Lemma 25 gives a characterisation of the functorialisation without
relying on the Batanin tree, hinting at a more genreal functorialisation operation
valid on every globular set, or even every computad with respect to well chosen
generators. This construction has been studied by the first author in the setting
of the type theory catt [5], and will not be useful for the purpose of this article.

21



Having defined the functorialisation of a Batanin tree, we may define the
functorialisation of an operation coh((, B, , )A, id) in a straightforward manner.
This is a special instance of the functorialisation of a cell, described by the first
author [5].

Definition 27. Given a Batanin tree B of dimension d together with a set of
maximal positions X ⊂ Pos(B), and two parallel cells a, b ∈ T Pos(∂d−1B) that
cover ∂d−1B, we define the functorialisation

(B, a → b) ↑ X = coh(B ↑ X,T (sB↑X
d )(c) → T (tB↑X

d )(c), idPos(B↑X))

where c = coh(B, a → b, idFree Pos(B)) is covering T Pos(B).

4.4 Chain reduction

Before introducing our final operation on trees, that we call chain reduction, we
need to introduce a family of trees that we call chains. Those are easily defined
for k ∈ N as the composites Chaink = D1 ∗0 · · · ∗0 D1, which correspond to the
composition of k consecutive 1-cells. Explicitly the globular set of positions of
Chaink is the following diagram

xChain
0 xChain

1 . . . xChain
k

fChain
1 fChain

2 fChain
k

We note that chains are precisely the trees of dimension at most 1. We can
then get higher dimensional chains Σn Chaind by using the suspension operation.
The tree Σn Chaind = Dn+1 ∗n · · · ∗n Dn+1 is the tree consisting of k consecutive
(n+ 1)-cells.

The chain reduction of a Batanin tree B of dimension d is a new tree Bred

obtained by merging the chains of positions of dimension d in B into a unique
position. It is defined together with a morphism

redB : Free Pos(Bred) → Free Pos(B)

that sends the merged position into the composite of the original chain. To
define the chain reduction of a tree, we define more generally for i ≥ dimB − 1
a new tree Bredi recursively as follows

br[]redi = br[]

Chaink
red0 = br[br[]]

br[B1, . . . , Bn]
redi+1 = br[B1

redi , . . . , Bn
redi ].

In these definitions, the first case takes precedence over the second one. It follows
that Bredi = B for i ≥ dimB, so that the only newly introduced operation
is BreddimB−1 which we will denote simply by Bred . For the morphism of com-
putads redB , we define again a morphisms redi,B : Free Pos(Bredi) → Free Pos(B)

22



recursively as follows:

redi,br[] = idFreeD0

red0,Chaink = compChaink
redi+1,br[B1,...,Bn] = ⟨Σ redi,B1

, . . . ,Σ redi,Bn
⟩.

Those morphisms are again identities for i ≥ dimB and we denote simply
reddimB−1,B by redB. Here, compChaink is the morphism FreeD1 → FreeCk,
which via the adjunction Free ⊣ Cell corresponds to the map D1 → TCk given
by the Yoneda lemma on the cell with the same name. We note also that the
last case uses the equality ΣFree = FreeΣ proven in [7], as well as the fact that
Free is left adjoint and thus preserves colimits.

Lemma 28. Consider a Batanin tree B of dimension d. Then, for every
maximal position p of Bred , there exists a natural number lengthB(p) and a map
chainB,p satsifying the following:

chainB,p : Pos(Σd−1 ChainlengthB(p)) → Pos(B)

redB(p) = T (chainB,p)(compΣd−1 ChainlengthB(p)
).

Proof. For the sake of simplicity, we often omit the index B in length and chain.
We prove this result by induction on d: If d ≤ 1, then by definition B = Chaink
for unique k, so we may let length(p) = k and chainp = idPos(B). So it suffices to
prove the result for d > 1, assuming it holds for trees of dimension lower than d.
In this case, we write B = br[B1, . . . , Bl]. By induction, considering j such that
dim(Bj) = dim(B)− 1, for every maximal position pj of Bj , we get an number
lengthBj

(pj) ∈ N>0 and a map

chainpj
: Free Pos(Σd−2 Chainlength(pj)) → Free Pos(Bj)

redB(pj) = T (chainpj
)(compΣd−2 Chainlength(pj)

).

Consider the canonical map inj : ΣPos(Bi) → Pos(B), then for p = inj(Σ pj), we
let lengthB(p) = lengthBj

(pj) together with the map chainp to be the following
composite

chainp = inj ◦Σchainpj
.

For this definition, we use the equality Σ ◦Pos = Pos ◦Σ (c.f. [7]). We have the
following equation:

redB(p) = ⟨Σ redi,B1 , . . . ,Σ redi,Bn⟩(inj(Σ pj))

= T (inj)Σ
Cell(redi,Bj

(pj))

= T (inj ◦(Σchainpj
))(compΣd−1 Chainlength(pj)

)

= T (chainp)(compΣd−1 Chainlength(p)
).

Taking the reduction of a Batanin tree does not change its boundary. This
equality is compatible with the source and target inclusion of the boundary in
the pasting scheme, as stated by the following result.

23



Lemma 29. Given a Batanin tree B of dimension d, we have the equality
∂d−1B

red = ∂B and the following squares commute

Free Pos(∂d−1(B
red)) Free Pos(Bred)

Free Pos(∂d−1B) Free Pos(B)

Free sB
red

d−1

redB

Free sBd−1

Free Pos(∂d−1(B
red)) Free Pos(Bred)

Free Pos(∂d−1B) Free Pos(B)

Free tB
red

d−1

redB

Free tBd−1

Proof. We will show by induction that ∂iB
redi = Bredi for all i ≥ dimB − 1 and

that the corresponding diagrams commute. The case where i ≥ dimB is trivial
with both sides equal to B, so we let i = dimB − 1. The case where B = br[] is
then vacuously true. In the case where B = Chaink for some k and i = 0, we
have ∂0 Chaink = br[] = ∂0 br[br[]]. Moreover, we have

red0,Chaink ◦Free(s
D1
0 ) = src(compChaink) = Free(sChaink0 ).

Finally, for i > 0, we have B = br[B1, . . . , Bn], and by induction, ∂i−1Bk =

∂i−1B
redi−1

k , which imply the equality ∂iB = ∂iB
redi . Moreover, we have that

redi,B ◦Free(sB
redi

i )

= ⟨Σ(redi−1,B1 ◦Free(s
B

redi−1
1

i−1 )), . . . ,Σ redi−1,Bn Free(sB
redi−1
n

i−1 )⟩
= ⟨ΣFree(sB1

i−1), . . .ΣFree(sBn
i−1)⟩

= Free(sBi )

If two Batanin trees B and B′ have the same chain reduction, then they must
be of the same dimension and composable. The following lemma identifies the
reduction of their composite, as well as the chain maps.

Lemma 30. Given two Batanin trees B, B′ of dimension d such that Bred =
B′red , we have (B ∗d−1 B

′)
red

= Bred . Moreover, for every maximal position
p ∈ Posd(B

red), we have that

lengthB∗d−1B′(p) = lengthB(p) + lengthB′(p)

24



and that the following diagrams commute:

Σd−1 Pos(ChainlengthB(p)) Pos(B)

Σd−1 Pos(ChainlengthB∗d−1B′ (p)) Pos(B ∗d−1 B
′)

chainB,p

Σd−1 in− in−

chainp

Σd−1 Pos(ChainlengthB′ (p)) Pos(B)

Σd−1 Pos(ChainlengthB∗d−1B′ (p)) Pos(B ∗d−1 B
′)

chainB′,p

Σd−1 in+ in+

chainp

for in± the pushout inclusions associated to Chaink+l = Chaink ∗0 Chainl.

Proof. We proceed by induction on the dimension of B and B′. If both trees are
of dimension at most 1, then the identity Chaink+l = Chaink ∗0 Chainl imploes
the result on length, the maps chainp are identity maps. If B and B′ are of
dimension d+1, then we write B = br[B1, . . . , Bn] and B′ = br[B′

1, . . . , B
′
m]. The

condition Bred = B′red implies that m = n and that for every i, Bi
red = B′

i
red

.
Then, given a maximal position p ∈ Pos(Bred), there exists pi ∈ Pos(Bi

red) such
that ini(pi) = p. We then have by induction

lengthB∗dB′(p) = lengthBi∗d+1B′
i
(pi)

= lengthBi
(pi) + lengthB′

i
(pi)

= lengthB(p) + lengthB′(p).

Moreover, we can prove the first square by induction as follows:

chainB∗dB′,p ◦Σd in− = ini ◦Σ(chainBi∗dB′
i,pi

◦Σd−1 in−)

= ini ◦Σ(in− ◦ chainBi,pi
)

= in− ◦ ini ◦ΣchainBi,pi

= in− ◦ chainB,p .

The commutativity of the other square is similar.

Using those lemmas, we may now define the chain reduction of a composite
cell in a computad. Suppose that a computad C is given together with a cell

c = coh(B,A, σ) ∈ Celld(C)

where d = dimB. As explained in Remark 12 that imples that

A = T (sBd−1)(a) → T (tBd−1)(b)

25



for some covering cells a, b ∈ (T Pos(∂d−1B))d−1. Using Lemma 29, we define
the chain reduction of c to be

cred = coh(Bred , sB
red

d−1(a) → tB
red

d−1(b), σ ◦ redB) ∈ Cell(C).

This cell defines a particular biasing of c, in the sense that it is a cell which is
weakly equivalent to the cell c. This can be seen by constructing a filler

assoc(c) = fill (Bi, fi, ai → bi, σi) : c → cred .

where B1 = B, f1 is the map associating to p the disc Ddim p, a1 = T (sBd−1)(a),

b1 = T (tBd−1)(b) and σ1 = σ, while B2 = Bred , f2 is the map associating to every

maximal position p the tree Σd−1 Chainlength(p), a2 = T (sB
red

d−1)(a), b2 = T (tB
red

d−1)(b)
and σ2 = σ ◦ redB. This filler is an invertible cell whose source is c and whose
target is cred .

5 Composite of invertible cells

Our aim in this section is to show that a cell c obtained as a composite of
invertible cells is invertible. We achieve this by constructing explicitly the inverse
c−1 and the witnesses uc, vc. Our strategy for constructing these cells can be
illustrated on a simple example: Consider the following composite cell c displayed
on the left hand side (with a, b, c invertible in X), the inverse that we construct
is displayed on the right hand-side

c = • • •⇓a

⇓b
⇓c c−1 = • • •⇓b−1

⇓a−1
⇓c−1

We note that the order of a and b must be swapped, so c−1 must be a composite
over the opposite pasting diagram. Defining the cell ux requires composing ua,
ub and uc together in order to cancel each of the cells with its inverse. This can
be done in multiple ways, as long as b is canceled before a. In order to get a
systematic scheme, we define the cancellation of the composite of a and b with
the composite of b and a as an intermediate step, called a telescope below, and we
then perform the cancellation of this composite in parallel with the cancellation
of c in an unbiased way. In general, we cancel the composition of maximal cells
in codimension 1 first and then proceed in an unbiased way.

5.1 Telescopes

We define the telescopes, a family of operations that allows us to cancel sequences
of consecutive cells composed with their inverses. Again, using the suspension,
it suffices to define those operations for the composite of k consecutive 1-cells in
codimension 0. Contrary to previously defined operations such as identities and
composites, the telescopes have arities computads that are not globular pasting
diagrams. In general, such cells can be thought of as “proof tactics”. Here the

26



tactics that we are describing consist of the following steps: associate together
the two cells in the middle of a composite of even arity, rewrite their composition
into an identity, cancel the identity, and repeat inductively.

We start by defining the 2-computad Telk for k ∈ N>0, which are the smallest
computads in which the telescopes cells are defined. Those computads can be
visualised as

Telk = x0 x1 x2 · · · xk

f1

α1⇐
g1

f2

α2⇐
g2

f3

α3⇐
g3

fk

αk⇐
gk

where αi : fi ∗0 gi → id. More formally, the computad Telk is determined by

V Telk
0 = {xTel

0 , . . . , xTel
k } ϕTelk

1 (fTel
i ) = xTel

i → xTel
i+1

V Telk
1 = {fTel

1 , gTel1 . . . , fTel
k , gTelk } ϕTelk

1 (gTeli ) = xTel
i+1 → xTel

i

V Telk
2 = {αTel

1 , . . . , αTel
k } ϕTelk

2 (αTel
i ) = fTel

i ∗0 gTeli → id(xTel
i−1)

and by V Telk
n = ∅ for k > 2, where the generators xi, fi, gi, αi are drawn from

disjoint countable sets. The inclusion of the generators of Telk into generators
of Telk+1 induces a generator-preserving monomorphism of computads, that
we denote by ik : Telk ↪→ Telk+1. Moreover, the 1-generators of the computad
Telk can be composed: we may first define the morphism of computads loopk :
Free Pos(Chain2k) → Telk, characterised by

loopk(f
Chain
i ) =

{
var fTel

i If 1 ≤ i ≤ k

var gTel2k−i+1 If k + 1 ≤ i ≤ 2k

This lets us construct the cell Cell(loopk)(compChain2k) ∈ Cell(Telk). One can
check that it is a map whose source and target are both given by var x0.

Theorem 31. There exists a cell telk ∈ Cell(Telk) whose source is the composite
Cell(loopk)(compChain2k) and whose target is the identity id0(x0).

Proof. We construct the cell telk by induction on k, strting from tel0 being the
identity. We choose then tel1 = varαTel

1 , and we define telk+1 as the composite
of four cells, corresponding to the four steps in the proof tactics that telk+1

encodes:

telk+1 = tel1k+1 ∗1 tel
2
k+1 ∗1 tel

3
k+1 ∗1 Cell(ik)(telk).

It suffices to define the cells tel1k+1, tel
2
k+1 and tel3k+1. The cell tel1k+1 is the

application of an associator that takes the unbiased composite of the boundary of
the telescope to a composite where the cells var fTel

k+1 and var gTelk+1 are associated
together. To define this cell, we note that there is a morphism of computads
σ : Free Pos(Chain2k+1) → Free Pos(Chain2k+2), defined by

σV (f
Chain
i ) =


var fChain

i if i < k + 1

(var fChain
k+1 ) ∗0 (var fChain

k+2 ) if i = k + 1

var fChain
i+1 if i > k + 1

27



We then define the first cell of the telescope to be the following cell, given here
with its source and target:

tel1k+1 = coh(Chain2k+2, compChain2k+2
→ Cell(σ)(compChain2k+1

), loopk+1)

src(tel1k+1) = fTel
1 ∗0 . . . ∗0 fTel

k+1 ∗0 gTelk+1 ∗0 . . . ∗0 gTel1

tgt(tel1k+1) = fTel
1 ∗0 . . . ∗0 fTel

k ∗0 (fTel
k+1 ∗0 gTelk+1) ∗0 gTelk ∗0 . . . ∗0 gTel1 .

The second cell consists in using the generator αTel
k+1 in order to relate fTel

k+1∗0gTelk+1

to the identity on xTel
k . We define the cell as follows, given here with its source

and target:

tel2k+1 = Cell(⟨fTel
1 , . . . , fTel

k , αTel
k+1, g

Tel
k , . . . , fTel

1 ⟩)((comp(Chain2k+1)↑fChain
k+1

))

src(tel2k+1) = fTel
1 ∗0 . . . ∗0 fTel

k ∗0 (fTel
k+1 ∗0 gTelk+1) ∗0 gTelk ∗0 . . . ∗0 gTel1

tgt(tel2k+1) = fTel
1 ∗0 . . . ∗0 fTel

k ∗0 id(xTel
k ) ∗0 gTelk ∗0 . . . ∗0 gTel1 .

The last cell removes the identity in the middle of the composite. We define a
map τ : Free Pos(Chain2k+1) → Free Pos(Chain2k), by the following assignment:

τ(fChain
i ) =


var fChain

i if i < k + 1

id(var xChain
k ) if i = k + 1

var fChain
i−1 if i > k + 1.

This lets us define the last of the three cells as follows, givene again with their
sources and targets:

tel3k+1 = coh(Chain2k,Cell(τ)(compChain2k+1
) → compChain2k , loopk)

src(tel3k+1) = fTel
1 ∗0 . . . ∗0 fTel

k ∗0 id(xTel
k ) ∗0 gTelk ∗0 . . . ∗0 gTel1

tgt(tel3k+1) = fTel
1 ∗0 . . . ∗0 fTel

k ∗0 gTelk ∗0 . . . ∗0 gTel1 .

This finishes the definition of the cell telk+1.

5.2 Pointwise inversion of a map

When a map sends all maximal position onto invertible cells, one can derive a
new map, obtained by inverting all the images of the maximal positions. This
process changes the order of compositions of maximal positions in codimension
1, which we handle by using the opposite pasting diagram.

Lemma 32. Consider an ω-category X = (X,α : TX → X), and a Batanin
tree B of dimension d, together with a map σ : Pos(B) → X sending every
maximal position p ∈ Pos(B) onto an invertible cell in X. Then, there exists a
map σ̄ : Pos(B) → X such that for every maximal position p of Pos(B), we have

σ̄V (p) = (op{d}(σ)(op
B
{d}(p)))

−1
. Moreover, we have

σ ◦ sBd−1 = σ̄ ◦ tBd−1 σ ◦ tBd−1 = σ̄ ◦ sBd−1.

28



Proof. We proceed by induction on the dimension of B, and since a cell of
dimension 0 cannot be invertible, we initialise the induction at dimension 1.
In this case, there exists k ∈ N>0 such that B = Chaink, and we proceed by
induction on k. In the initialisation, B = D1 is the 1-dimensional disk, and
the map σ : D1 → X corresponds by the Yoneda lemma to a cell x ∈ X,
which by assumption is invertible, and we then choose σ̄ = x−1 : D1 → X.
For the iterative case, B = Chaink+1 = Chaink ∗0D1, and we have a map
⟨σ, x⟩ : Pos(Chaink ∗0D1) → X, with σ a map sending all maximal positions
to invertible cells and x an invertible cell. We choose the pointwise inverse
to be ⟨x−1, σ̄⟩ : Pos(D1 ∗0 Chaink) → X. This concludes the induction for the
initialisation case of a Batanin tree of dimension 1. Consider now a Batanin tree
B of dimension d+ 1, we have B = br[B1, . . . , Bn] and a map σ : Pos(B) → X
decomposes as ⟨Σσ1, . . . ,Σσn⟩ with σi : Pos(Bi) → ΩX. We then define σ′

i to
be either σ̄i constructed by induction if dim(Bi) = d or σi otherwise. This lets
us define σ̄ = ⟨Σσ′

1, . . . ,Σσ′
n⟩.

5.3 Invertibility of composition

From now on, we consider an ω-category X = (X,α : TX → X). Our aim is
to show that a composite of invertible cells in X is itself invertible, we start by
making this statement precise. Given a set of cells A of X = ⊔Xn, we define the
set C(A) of composites of cells of A to be the set of all cells of the form

cohX(B, T (sBd−1)(a) → T (tBd−1)(b), σ),

where B is a Batanin tree of dimension d, the cells a, b ∈ (T Pos(∂d−1B)) are
cover ∂d−1B and σ : Pos(B) → X is a map sending maximal positions of B onto
cells in A. Given the set W of invertible cells in X, the set of composites of
invertible cells is the set C(W ), and we prove here that every cell in C(W ) is
invertible. For the coinductive hypothesis, we need a slightly stronger statement,
namely that iterated composited of invertible cells are invertible. To set up the
notation, define{

W0 = W

Wn+1 = C (W≤k)
W≤n =

⋃
k≤n

Wk W∞ =
⋃
n

Wn.

The set W∞ is the set of iterated composites of invertible cells.

Theorem 33. All cells in W∞ are invertible, or in other words, W∞ ⊂ W .

Proof. By coinduction, it suffices to show that given a cell c ∈ W∞, there exists
cells c−1 ∈ X and uc, vc ∈ W∞ satisfying the correct boundary conditions.
Indeed, this translates into W∞ being a postfixed point of the function defining
W , thus it implies W∞ ⊂ W . We prove the required statement by induction on
the natural number n such that c ∈ Wn. The base case n = 0 follows immediately
from the definition of the set W as a postfixed point. Additionnally, if c ∈ W ,

so is c−1, by choosing (c−1)
−1

= c. The rest of this section is dedicated to a

29



construction that proves the inductive case, which can be summarised into the
following:

Claim. Given n ∈ N, assume that for every k ≤ n and every cell c ∈ Wk, the

cells c−1 ∈ X and uc, vc ∈ W∞, and that we have (c−1)
−1

= c. Then for any

c ∈ Wn+1, there exist cells c−1 ∈ X and uc, vc ∈ W∞, and (c−1)
−1

= c.

For the rest of this proof, we fix a number n ∈ N and we assume the following
inductive hypothesis: Given any cell x ∈ Wk with k ≤ n, the cells x−1 ∈ X and
ux, vx ∈ W∞ have been constructed. We consider a cell c ∈ Wn+1, that we can
write as

c = cohX(B, T (sBd−1)(a) → T (tBd−1)(b), σ)

where B is a Batanin tree of dimensions d, a, b ∈ T Pos(∂d−1B) are covering
cells and σ sends all maximal positions of B onto cells in W≤n. We construct
the cells c−1, uc and vc. To simplify the notations, we introduce the cell
c0 = coh(B, T (sBd−1)(a) → T (tBd−1)(b), idFree Pos(B)) ∈ T Pos(B), in such a way

that c = (c0)
X(σ). Moreover, we write opB instead of op{d} B and B ∗B instead

of B ∗d−1 B.
By the inductive hypothesis, for any maximal position p ∈ Pos(B), the cell

σV (p) ∈ W≤n admits an inverse. Therefore Lemma 32 lets us define the map
σ̄ : Pos(opB) → X and then choose c−1 as follows:

c−1 = cohX(B, T (sBd−1)(b) → T (tBd−1)(a), σ̄).

We then check using Lemma 32 that the cell c−1 constructed this way has the
expected source and boundary.

src(c−1) = α ◦ T (σ̄)(T (sBd−1)(b)) = α(T (tBd−1)(b)) = tgt(c)

tgt(c−1) = α ◦ T (σ̄)(T (tBd−1)(a)) = α(T (sBd−1)(b)) = src(c)

Moreover, the equality (c−1)
−1

= c can be verified by induction. Additionally
The counit vc is can be obtained for free, if we can construct uc−1 . Indeed,

c−1 ∈ Wn+1, satisfies (c
−1)

−1
= c, hence, we choose vc = uc−1 . So to conclude

the proof, it suffices to construct the cell uc.
We construct the cell uc ∈ W∞ as a composite of three different cells as

follows:
uc = m1 ∗n+1 m

2 ∗n+1 m
3.

In such a way that we have

src(uc) = c ∗n c−1 tgt(uc) = id(src c).

So it suffices to define the three cells m1, m2 and m3. We define these cells as
three different steps.

30



Associator. The first step in constructing uc consists in reassociating the
binary composite of c and c−1. In the target, all the maximal cells that are
composed in codimension 1 are associated together, and the result of those
compositions are composed in an unbiased way. First, we define the filler cell

m1
0 = fill(Bi, fi, ai → bi, σi),

with B1 = Dd ∗d−1 Dd, the map f1 = ⟨B, opB⟩, the sphere a1 → b1 is the
full sphere defining the unbiased composite of B1, and σ1 = ⟨c0, c0−1⟩; as

well as B2 = (B ∗d−1 B)
red

, f2 is the map that sends any maximal position

p onto Chainlength(p), the sphere a2 → b2 is given by a2 = T (s(B∗d−1B)red )(a)

and b2 = T (t(B∗d−1B)red )(a), and the map σ2 = redB∗d−1B. One can check that
µstr(f1) = µstr(f2) = B ∗d−1 B. Moreover, by Lemma 29, we can compute

Cell(redB∗B) ◦ T (sB∗Bred

d−1 )(a) = T (sB∗B
d−1 )(a) = src(c0)

Cell(redB∗B) ◦ T (tB∗Bred

d−1 )(a) = T (tB∗B
d−1 )(a) = tgt(c0

−1).

This justifies that the filler m1
0 is well defined. The source and target are given

by

src(m1
0) = c0 ∗d−1 c0

−1

tgt(m1
0) = coh((B ∗ B)

red
, T (sB∗Bred

d−1 )(a) → T (tB∗Bred

d−1 )(a), redB∗B)

We then define m1 = (m1
0)

X(⟨σ, σ̄⟩), in such a way that it satisfies

src(m1) = c ∗d−1 c
−1

tgt(m1) = cohX((B ∗ B)
red

, T (s
(B∗B)red

d−1 )(a) → T (t
(B∗B)red

d−1 )(a), redB∗B)(⟨σ, σ̄⟩).

Telescope cancellation. Our next step consists in cancelling away the codi-
mension 1 composite of maximal cells into identities, using the telescopes. To
construct the cell that preforms all telescope operation at the same time, we use
the functorialisation of the reduced coherence cell with respect to all its maximal
arguments. Denote M the set of maximal positions of the tree (B ∗ B)

red
. We

define the maps

τ− : Pos((B ∗ B)
red

) → X τ+ : Pos((B ∗ B)
red

) → X

τ− = α ◦ T (⟨σ, σ̄⟩) ◦ Cell(redB∗B) τ+ = α ◦ T (⟨σ, σ̄⟩ ◦ sB∗B
d−1 ) ◦ Cell(idB∗B).

Moreover, for every position p of (B ∗ B)
red

, we define a cell τp such that
src(τp) = τ−(p) and tgt(τp) = τ+(p), in such a way that applying Lemma 25
shows that τ− and τ+ together with (τp) define a map

τ : Pos(((B ∗ B)
red

) ↑ X) → X

τ ◦ s(B∗B)red

d−1 = τ− τ ◦ t(B∗B)red

d−1 = τ+.

31



To construct the cell τp, we apply Lemma 30: Denoting k = lengthB(p), we
have lengthB∗B(p) = 2k. For each 1 ≤ i ≤ k, the position f chain

i satisfies

by assumption, Cell(σ)(chainp(Σ
d−1 fChain

i )) ∈ W≤n, thus we may assume by

induction that σV (chainp(Σ
d−1 fChain

i ))
−1

∈ X and ησV (chainp(Σd−1 fChain
i )) ∈ W∞

are already constructed. This lets us define the map canp : Σd−1 Telk → X, by
the following assignment:

fTel
i 7→ σV (chainp(Σ

d−1 fChain
i )) gTeli 7→ σV (chainp(Σ

d−1 fChain
i ))

−1

αTel
i 7→ ησV (chainp(Σd−1 fChain

i )).

Using Lemma 30, we get the following commutative diagram of globular sets,
where the two cospans are the legs of pushout square:

Pos(Σd−1 Chaink)

Pos(B)

Pos(Chaink) Pos(Chain2k)

Pos(B) Pos(B ∗d−1 B)

Σd−1 in1

chainp

in1
Σd−1 in2

chainp

chainp

in2

from which we deduce ⟨σ, σ̄⟩ ◦ chainp = ⟨σ ◦ chainp, σ̄ ◦ chainp⟩. Moreover, one
can show the following equalities, by showing that the involved maps coincide
on all locally maximal positions:

canp ◦Σd−1(loopk ◦ in1) = σ ◦ chainp canp ◦Σd−1(loopk ◦ in2) = σ̄ ◦ chainp

This map lets us define the cell τp = (telk)
X(canp) ∈ X, satisfying the following

equations:

src(τp) = α ◦ T (canp ◦Σd−1 loopk)(compΣd−1 Chain2k)

= α ◦ T (⟨canp ◦Σd−1(loopk ◦ in1), canp ◦Σ
d−1(loopk ◦ in2)⟩)

= α ◦ T (⟨σ, σ̄⟩ ◦ chainp)(compΣd−1(Chain2k))

= τ−(p)

tgt(τp) = idd−1(src(σV (p1))) = τ+(p).

We now define the cell

m2 = (((B ∗ B)
red

, T (s
(B∗B)red

d−1 )(a) → T (t
(B∗B)red

d−1 )(a)) ↑ M)X(τ).

The source and target of m3 are given by

src(m2) = cohX((B ∗ B)
red

, T (s
(B∗B)red

d−1 )(a) → T (t
(B∗B)red

d−1 )(a), redB∗B)(⟨σ, σ̄⟩)

tgt(m2) = cohX(∂d−1B, a → a, idB∗B)(⟨σ, σ̄⟩ ◦ s
B∗B
d−1 ).

32



Unbiased unitor. The final step of our construction consists in the application
of an unbiased unitor, which allow us to cancel the composite of identities that
we have produced into a single identity. Explicitly, we consider the cells

m3
0 = unitor((B ∗ B)

red
, a) m3 = (m3

0)
X(⟨σ, σ̄⟩ ◦ sB∗B

d−1 ).

The source and target of m3 are given by

src(m3) = cohX(∂d−1B, a → a, idB∗B)(⟨σ, σ̄⟩ ◦ s
B∗B
d−1 )

tgt(m3) = id((a)X(⟨σ, σ̄⟩ ◦ sB∗B
d−1 )).

This terminates the construction of uc, which proves the claim and thus concludes
the proof of the theorem.

A consequence of the fact that a composite of invertible cells is invertible is
the fact that the relation of equivalence between cells in an ω-category define an
equivalence relation

Corollary 34. The relation ∼ is an equivalence relation

Proof. We have proven that this relation is symmetric (Lemma 15) and reflexive
(Corollary 17), so it suffices to prove transitivity. Consider three cells c1, c2, c3
such that c1 ∼ c2 and c2 ∼ c3. There exist two invertible cells x, x′ with

src(x) = c1 tgt(x) = c2 src(x′) = c2 tgt(x′) = c3.

By Theorem 33, the cell x ∗ x′ is invertible, it witnesses the relation c1 ∼ c3.

5.4 Invertible cells of a computad

We now consider the question of the invertibility of cells in an ω-category freely
generated by a computad. Proposition 16 and Theorem 33 applied in a computad
give a syntactic recognition criterion for invertibility:

Proposition 35. Consider a cell c ∈ Celld(C) in a computad C. If suppd(c) = ∅
then the cell c is invertible.

Proof. We proceed by structural induction on the cell c. When c is a generator,
the statement is vacuously true since the support can not be empty. Suppose
therefore that c = coh(B,A, σ) and that the result holds for the cell σV (p) for
every p ∈ Posd(B). If no such position exists, then dimB < d and c is invertible
by Proposition 16. Otherwise, the support of each σV (p) is empty, so it is
invertible. By Theorem 33, we concude then that c is invertible as well.

This sufficient condition may not be necessary in general, indeed in an
arbitrary computad, a generator may be invertible, violating this condition.
However, this condition is necessary in finite dimensional computads. To prove
this, we rely on the following technical result.

33



Lemma 36. Consider a cell c ∈ Celld(C) in a computad C and a cell c. such
that suppd(c) = ∅, then suppd−1(src(c)) = suppd−1(tgt(c)) = suppd−1 c.

Proof. We proof this result by structural induction on c. Again, when c is a
generator the statement is vacuous, because its d-support is not empty. Suppose
that c = coh((, B, , )A, σ) and that for every p ∈ Pos()d(B) the result holds for
the cell σV (p). If no such cell exists, then dimB < d, so a, b cover Pos(B), thus
we have

suppd−1(c) =
⋃

p∈Posd−1(B)

suppd−1(σV (p))

= suppd−1(Cell(σ)(a))

= suppd−1(Cell(σ)(b)).

Otherwise, dimB = d, and so a = T (sBd )(a
′) and b = T (tBd )(b

′) with both
a′, b′ ∈ T (Pos(∂d−1B)) covering it. We then have:

suppd−1(c) =
⋃

p∈Posd−1(B)

suppd−1(σV (p)) ∪
⋃

p∈Posd(B)

suppd−1(σV (p)).

For every position p ∈ Posd(B), we have by induction suppd−1(σV (p)) =
suppd−1(σV (src(p))). Moreover, for every position p ∈ Posd−1(B), there ex-
ists a unique position q in the image of sBd−1 parallel to p. This positions are
connected by a sequence of positions of dimension d, thus by induction, we have
suppd−1(p) = suppd−1(q). This proves that we have

suppd−1(c) =
⋃

p∈Posd−1(∂d−1B)

suppd−1(s
B
d−1(p)) = supp(Cell(σ ◦ Free(sBd−1))(a)).

A similar argument shows the result for the target.

Proposition 37. In a finite dimensional computad C, a cell c ∈ Celld(C) is
invertible if and only if suppd(c) = ∅.

Proof. We show that if we have an invertible cell c ∈ Celld(C) and a generator
x ∈ suppd(c), then C is infinite dimensional by coinduction. Indeed, considering
such a cell c, we have the cell uc ∈ Celld+1(C). Moreover, x ∈ suppd(src(uc))
and suppd−1(tgt(uc)) = suppd−1(tgt(c)) = ∅. By Lemma 36, this implies that
there exists suppd+1(uc) ̸= ∅. Since moreover uc is invertible, this implies by
coinduction that C is infinite dimensional.

6 Implementation in CaTT

The description of computads that we work with in this article can be equivalently
formulated as a dependent type theory called catt, introduced by Finster and
Mimram [14]. In fact the formulation of computads proposed by Dean et
al. [13] was heavily influenced by this dependent type theory, and the syntactic

34



LoC LoC (ratio) declarations declarations (ratio)
vanilla 531 +0% 93 +0%

s 470 −11.5% 85 −8.6%
sf 397 −25.2% 76 −18.2%
sfb 378 −28.8% 70 −24.7%
sfbi 73 −86.2% 16 −82.8%

Figure 1: Mechanisation of the unit of the Eckmann-Hilton cell.

equivalence between the two was proved by the two authors of the paper and
Sarti [8]. An implementation of a typechecker for the dependent type theory
catt is avaiblable and maintained by the first author2. We have integrated the
work presented in this article to the implementation, in such a way that given a
term in the theory whose variables are all of dimension lower than the term, one
can automatically compute its inverse or a witness of equivalence for this term.
In practice, the user has defined a term t, which happens to be invertible, they
can access to the chosen inverse computed by our algorithm by inputting I(t),
and they can access the chosen witness of equivalence by inputting U(t).

This allows for improved mechanisation of terms in catt, complementing the
suspension and the functorialisation of terms that were already implemented.
We have assessed the relevance of this mechanisation principle on a practical
example: the definition of the term corresponding to the Eckmann-Hilton cell,
as well as its inverse and the witness that these two cancel each other. The
choice of this particular example is motivated by several considerations: They
are important examples in higher category theory, due to their connection with
topology and homotopy theory. These cells are complicated enough to define the
simplification will be significant on it, and is not definable in a pasting scheme,
making the mechanisation non-trivial. Yet they are among the simplest examples
with this property, and are reasonable to define even without this mechanisation
principle, making them a very good example.

We have formalised the Echmann-Hilton and its inverse as well as the unit cell
for the equivalence, and verified them in catt using various levels of mechanisation.
The results are compiled in Figure 1, and the files that we used to assess these
are available under the examples/eckmann-hilton-versions/ directory of the
repository. To assess the complexity of a file, we use as proxies the number of
lines of code written in the file and the number of individual declaration the file
has. The number of declaration fails to account for the the complexity of each of
the declaration, while the number of lines of codes magnifies this parameter by
accounting for line skips for code formatting and comments. Overall, these two
proxies together provide a reasonable proxy for the complexity of the definitions.
The levels of mechanisation that we consider are cumulative: “vanilla” has no
automation, and then s inducates that the suspension is used, f inducates that
the functorialisation is used, b indicates that the compositions and identities are
taken as built-ins and i indicates that inverses and witnesses of composition are

2http://www.github.com/thibautbenjamin/catt

35

http://www.github.com/thibautbenjamin/catt


computed automatically using inverses. The ratios are always considered against
the vanilla case with no machanisation at all. Both of the chosen metrics indicate
that the mechanisation of inverses is by far the most efficient mechanisation
principle that we have defined for this example. It is also by far the most intricate
of those mechanisation principle. Since our example consists in defining a cell,
its inverse, and the unit of the inversion, one would expect that adding the
mechanisation of the inverses to divide the size by 3. However, comparing sfbi

and sfb, we observes a diminution of 80% in the number of lines of code and
of 77% of the number of declarations. This can be explained by the fact that
the unit cell is more complex than both the Eckmann-Hilton cell and its inverse,
and also by the fact that the inverse mechanisation also allows for simplification
in the definition of the Eckmann-Hilton cell itself.

References

[1] Thorsten Altenkirch and Ondrej Rypacek. A syntactical approach to weak
omega-groupoids. page 15 pages. doi:10.4230/LIPICS.CSL.2012.16.

[2] Dimitri Ara. Sur les ∞-groupöıdes de grothendieck et une variante ∞-
catégorique. URL: https://www.i2m.univ-amu.fr/perso/dimitri.ara/
files/these.pdf.

[3] Bruce Bartlett, Christopher L. Douglas, Christopher J. Schommer-Pries, and
Jamie Vicary. Modular categories as representations of the 3-dimensional
bordism 2-category. URL: http://arxiv.org/abs/1509.06811, arXiv:
1509.06811.

[4] Michael A. Batanin. Monoidal globular categories as a natural environment
for the theory of weak n-categories. 136(1):39–103. doi:10.1006/aima.

1998.1724.

[5] Thibaut Benjamin. A type theoretic approach to weak ω-categories
and related higher structures. URL: https://theses.hal.science/

tel-03106197.

[6] Thibaut Benjamin, Eric Finster, and Samuel Mimram. Globular weak ω-
categories as models of a type theory. doi:10.48550/ARXIV.2106.04475.

[7] Thibaut Benjamin and Ioannis Markakis. Opposites of weak ω-categories and
the suspension and hom adjunction. doi:10.48550/ARXIV.2402.01611.

[8] Thibaut Benjamin, Ioannis Markakis, and Chiara Sarti. CaTT contexts
are finite computads. URL: https://arxiv.org/abs/2405.00398, arXiv:
2405.00398.

[9] Clemens Berger. A cellular nerve for higher categories. 169(1):118–175.
doi:10.1006/aima.2001.2056.

36

https://doi.org/10.4230/LIPICS.CSL.2012.16
https://www.i2m.univ-amu.fr/perso/dimitri.ara/files/these.pdf
https://www.i2m.univ-amu.fr/perso/dimitri.ara/files/these.pdf
http://arxiv.org/abs/1509.06811
https://arxiv.org/abs/1509.06811
https://arxiv.org/abs/1509.06811
https://doi.org/10.1006/aima.1998.1724
https://doi.org/10.1006/aima.1998.1724
https://theses.hal.science/tel-03106197
https://theses.hal.science/tel-03106197
https://doi.org/10.48550/ARXIV.2106.04475
https://doi.org/10.48550/ARXIV.2402.01611
https://arxiv.org/abs/2405.00398
https://arxiv.org/abs/2405.00398
https://arxiv.org/abs/2405.00398
https://doi.org/10.1006/aima.2001.2056


[10] John Bourke. Iterated algebraic injectivity and the faithfulness conjecture.
4(2):183–210. doi:10.21136/HS.2020.13.

[11] Eugenia Cheng. An ω-category with all duals is an ω-groupoid. 15(4):439–
453. doi:10.1007/s10485-007-9081-8.

[12] Eugenia Cheng and Aaron Lauda. Higher-dimensional categories: an il-
lustrated guide book. URL: https://eugeniacheng.com/wp-content/
uploads/2017/02/cheng-lauda-guidebook.pdf.

[13] Christopher J. Dean, Eric Finster, Ioannis Markakis, David Reutter, and
Jamie Vicary. Computads for weak ω-categories as an inductive type. URL:
http://arxiv.org/abs/2208.08719, arXiv:2208.08719.

[14] Eric Finster and Samuel Mimram. A type-theoretical definition of weak
ω-categories. In Proceedings of the 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 1–12. ACM. arXiv:1706.02866,
doi:10.5555/3329995.3330059.

[15] Soichiro Fujii, Keisuke Hoshino, and Yuki Maehara. Weakly invertible cells
in a weak ω-category. doi:10.48550/ARXIV.2303.14907.

[16] Alexander Grothendieck. Pursuing stacks. URL: http://arxiv.org/abs/
2111.01000, arXiv:2111.01000.

[17] Simon Henry. Algebraic models of homotopy types and the homotopy hy-
pothesis. URL: http://arxiv.org/abs/1609.04622, arXiv:1609.04622.

[18] Simon Henry and Edoardo Lanari. On the homotopy hypothesis in dimension
3. 39:735–768. arXiv:1905.05625.

[19] Yves Lafont and François Métayer. Polygraphic resolutions and homology
of monoids. 213(6):947–968. doi:10.1016/j.jpaa.2008.10.005.

[20] Yves Lafont, François Métayer, and Krzysztof Worytkiewicz. A folk model
structure on omega-cat. 224(3):1183–1231. arXiv:0712.0617, doi:10.
1016/j.aim.2010.01.007.

[21] Tom Leinster. Higher operads, higher categories. Number 298 in London
Mathematical Society lecture note series. Cambridge University Press. URL:
https://arxiv.org/abs/math/0305049, arXiv:math/0305049.

[22] Tom Leinster. A survey of definitions of n-category. URL: https://arxiv.
org/abs/math/0107188, arXiv:math/0107188.

[23] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory.
In Pierre-Louis Curien, editor, Typed Lambda Calculi and Applications,
volume 5608, pages 172–187. Springer Berlin Heidelberg. doi:10.1007/

978-3-642-02273-9_14.

37

https://doi.org/10.21136/HS.2020.13
https://doi.org/10.1007/s10485-007-9081-8
https://eugeniacheng.com/wp-content/uploads/2017/02/cheng-lauda-guidebook.pdf
https://eugeniacheng.com/wp-content/uploads/2017/02/cheng-lauda-guidebook.pdf
http://arxiv.org/abs/2208.08719
https://arxiv.org/abs/2208.08719
https://arxiv.org/abs/1706.02866
https://doi.org/10.5555/3329995.3330059
https://doi.org/10.48550/ARXIV.2303.14907
http://arxiv.org/abs/2111.01000
http://arxiv.org/abs/2111.01000
https://arxiv.org/abs/2111.01000
http://arxiv.org/abs/1609.04622
https://arxiv.org/abs/1609.04622
https://arxiv.org/abs/1905.05625
https://doi.org/10.1016/j.jpaa.2008.10.005
https://arxiv.org/abs/0712.0617
https://doi.org/10.1016/j.aim.2010.01.007
https://doi.org/10.1016/j.aim.2010.01.007
https://arxiv.org/abs/math/0305049
https://arxiv.org/abs/math/0305049
https://arxiv.org/abs/math/0107188
https://arxiv.org/abs/math/0107188
https://arxiv.org/abs/math/0107188
https://doi.org/10.1007/978-3-642-02273-9_14
https://doi.org/10.1007/978-3-642-02273-9_14


[24] Georges Maltsiniotis. Grothendieck∞-groupoids, and still another definition
of ∞-categories. URL: http://arxiv.org/abs/1009.2331, arXiv:1009.
2331.

[25] Ioannis Markakis. Computads for generalised signatures. 228(9):107675.
doi:10.1016/j.jpaa.2024.107675.

[26] Samuel Mimram. Towards 3-dimensional rewriting theory. 10(2):1. arXiv:
1403.4094, doi:10.2168/LMCS-10(2:1)2014.

[27] Alex Rice. Coinductive Invertibility in Higher Categories. URL: http:
//arxiv.org/abs/2008.10307, arXiv:2008.10307.

[28] Craig C Squier. Word problems and a homological finiteness condition for
monoids. Journal of Pure and Applied Algebra, 49(1-2):201–217, 1987.

[29] Ross Street. The petit topos of globular sets. 154(1-3):299–315. doi:

10.1016/S0022-4049(99)00183-8.

[30] Benno van den Berg and Richard Garner. Types are weak ω-groupoids.
102(2):370–394. arXiv:0812.0298, doi:10.1112/plms/pdq026.

[31] Mark Weber. Generic morphisms, parametric representations and weakly
cartesian monads. 13:191–234. URL: https://eudml.org/doc/124614.

38

http://arxiv.org/abs/1009.2331
https://arxiv.org/abs/1009.2331
https://arxiv.org/abs/1009.2331
https://doi.org/10.1016/j.jpaa.2024.107675
https://arxiv.org/abs/1403.4094
https://arxiv.org/abs/1403.4094
https://doi.org/10.2168/LMCS-10(2:1)2014
http://arxiv.org/abs/2008.10307
http://arxiv.org/abs/2008.10307
https://arxiv.org/abs/2008.10307
https://doi.org/10.1016/S0022-4049(99)00183-8
https://doi.org/10.1016/S0022-4049(99)00183-8
https://arxiv.org/abs/0812.0298
https://doi.org/10.1112/plms/pdq026
https://eudml.org/doc/124614

	Introduction
	Globular pasting diagrams
	Globular sets
	Batanin trees and their positions
	Operations on pasting diagrams

	Weak ω-categories
	Computads
	ω-categories
	Suspensions and opposites
	Invertible and equivalent cells

	Constructions in weak ω-categories
	Unbiased unitors
	Filler cells
	Functorialisation of coherences
	Chain reduction

	Composite of invertible cells
	Telescopes
	Pointwise inversion of a map
	Invertibility of composition
	Invertible cells of a computad

	Implementation in CaTT

