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4 Hom ω-categories of a computad are free
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Abstract

We provide a new description of the hom functor on weak ω-categories,

and we show that it admits a left adjoint that we call the suspension func-

tor. We then show that the hom functor preserves the property of being

free on a computad, in contrast to the hom functor for strict ω-categories.

Using the same technique, we define the opposite of an ω-category with

respect to a set of dimensions, and we show that this construction also

preserves the property of being free on a computad. Finally, we show that

the constructions of opposites and homs commute.

1 Introduction

In recent years, higher category theory has found a wide range of applications in
various fields of mathematics and computer science. Globular higher categories
and their computads have been used significantly in rewriting theory [22], homol-
ogy theory [18], homotopy theory [13] and topological quantum field theory [3].
Furthermore, globular higher groupoids describe identity types in homotopy
type theory [2, 21, 25] and they are conjectured to model spaces [14, 15]. Com-
putads play an important role in the homotopy theory of higher categories. They
are combinatorial structures that freely generate higher categories, and charac-
terise cofibrant objects in the folk model structure of strict ω-categories [19, 23].

Strict ω-categories are one of the most studied kind of globular higher cate-
gory. They are usually defined via enrichment, so their composition operations
are associative and unital and satisfy the interchange laws. An immediate con-
sequence of their definition is the existence of opposite and hom ω-categories.
Opposites are obtained by exchanging the source and target of cells and revers-
ing the order of composition, whereas enrichment gives an ω-category structure
to the collection of cells between two objects. While opposites preserve freeness
on a computad, the construction of hom ω-categories does not. This is due to
the Eckmann-Hilton argument, which imposes a commutativity relation on the
arrows of certain hom ω-categories. In this paper, we focus on weak ω-categories
and show that the construction of homs does preserve freeness on a computad
in this case.
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Contributions. We give a novel description of the hom functor for weak
ω-categories, using the computads-first approach of Dean et al. [11], and we
show that it admits a left adjoint, the suspension functor. Moreover, we use the
same approach to construct the opposites of ω-categories, and we show that the
two constructions commute.

The opposite and the suspension functors preserve freeness on a computads
by construction. Our main result is that the same is true for the hom functor.
We first identify the generators of the hom ω-category of a computad as its
indecomposable cells. Every cell of the hom ω-category can be decomposed into
indecomposable cells. Moreover, the generators satisfy no relations, so the hom
ω-category of a computad is freely generated by by its indecomposable cells.

We further provide an implementation of opposites as a meta-operation in
the proof assistant catt

1 for ω-categories, based on the type theory of Finster
and Mimram [12]. This implementation relies on the equivalence of contexts in
this type theory with finite computads [8]. In conjunction with the automatic
computation of suspensions [6] and of inverses [7], this meta-operation can be
used, for example, to reduce the size of the code that produces cells witnessing
the Eckmann-Hilton argument, its inverse and their cancellation witnesses by
95%.

Related work. Both our constructions proceed similarly, taking advantage
of the inductive description of computads of Dean et al. [11] to lift adjoints
first from globular sets to computads, and then from computads to ω-categories.
Those constructions provide further evidence that this computads-first approach
is well-suited for developing the theory of ω-categories.

The construction of the suspension functor is inspired by the suspension
meta-operation on the type theory catt, introduced in the first author’s thesis [6].
The former extends the latter via the the identification of catt contexts with
finite computads [8].

Hom ω-categories have been previously constructed by Cottrell and Fujii [10],
using Leinster’s approach to ω-categories. We give an alternative explicit con-
struction of the hom ω-category functor, that allows us to prove that it pre-
serves the property of being free on a computad. We note that even though
both constructions provide an ω-category structure on the same globular set of
morphisms, they need not coincide. We conjecture that instead they are merely
weakly equivalent.

Overview. We start in Section 2 by recalling the suspension and hom adjunc-
tion

Σ : Glob ⇄ Glob⋆⋆ : Ω

between globular sets and bipoitned globular sets. We then use this adjunction
to describe globular pasting diagrams, the arities of the opertions of ω-categories.
In Section 3, we introduce computads and weak ω-categories following Dean et

1Available at https://github.com/thibautbenjamin/catt
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al. [11]. First, the category of computads and morphisms of free ω-categories is
defined by an inductive construction, together with an adjunction with globular
sets

Free : Glob ⇄ Comp : Cell .

Then, ω-categories are defined as algebras for the monad T induced by this
adjunction.

Section 4 is dedicated to the construction of the suspension and hom adjunc-
tion. We start by extending the suspension of globular sets to computads in a
way that is compatible with the adjunction Free ⊣ Cell. Compatibility with the
adjunction gives rise to a natural transformation

ΣT : ΣT ⇒ T ⋆⋆Σ

where T ⋆⋆ is the free bipointed ω-category monad. The mate of this natural
transformation is a morphism of monads. Hence, it induces an extension

Ω : ωCat⋆⋆ → ωCat

of the hom functor to ω-categories by the formal theory of monads [24]. More-
over, by the adjoint lifting theorem, we obtain a left adjoint to this functor.

We then prove our main result that the hom functor preserves freeness on a
computad. From an ω-category X, we construct a computad CX whose genera-
tors are the indecomposable cells of X together with a moprhism of ω-categories
σX : CX → X from the free ω-category on CX to X. We then show that σX is an
isomorphism in the case that X is the hom ω-category of a computad. It follows
that the hom ω-category functor restricts to a functor

Ω : Comp⋆⋆ → Comp

on the level of computads.
In Section 5, we use the same inductive technique to construct the opposites

of a weak ω-category. In general, n-categories admit 2n − 1 opposites, obtained
by reversing the direction of cells of certain dimensions. Similarly, ω-categories
have uncountably many opposites, indexed by the group G of subsets of the
positive natural numbers. We construct opposite ω-categories by first defining
the opposites of globular sets and computads

op : Glob → Glob op : Comp → Comp

in a way that is compatible with the adjunction Free ⊣ Cell. This gives rise to
an endomorphism of the free ω-category monad, hence an endofunctor

op : ωCat → ωCat

of the category of ω-categories. We then show that the formation of opposites
gives rise to an action G on the category of ω-categories, so in particular the
functors op are involutive. Finally, we show that the formation of opposites and
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homs commute by proving a commutativity result for the associated morphisms
of monads.

Throughout this paper we illustrate with simple examples how the construc-
tions we introduce interract with the operations of ω-categories. In Section 6,
we conclude with a discussion of a more involved example, that of the Eckmann-
Hilton cells. We explain how the suspension can be used to raise the dimension
of Eckmann-Hilton cells. We remark that certain opposites of Eckmann-Hilton
cells are also their inverses, which is proven in our subsequent article [7].

2 Globular pasting diagrams

In this section, we briefly recall the notion of globular pasting diagrams, since
they are a basic ingedient for any definition of weak ω-categories. Those are a
family of globular sets such that diagrams indexed by them in a strict ω-category
can be composed in a unique way. Pasting diagrams are parametrised by rooted,
planar trees [5], an inductive description of whose as iterated lists was recently
given by Dean et al [11, Section 2]. Our presentation in this section follows ibid.
and Leinster [20, Appendix F.2], noting that pasting diagrams are bipointed
globular sets generated by the suspension and the wedge sum operations.

To set the notation, we recall that globular sets are presheaves on the cat-
egory G of globes with objects the natural numbers N and morphisms freely
generated by the source and target inclusions

sn, tn : [n] → [n+ 1]

under the globularity relations:

sn+1 ◦ sn = tn+1 ◦ sn sn+1 ◦ tn = tn+1 ◦ tn.

In other words, a globular set X consists of a set Xn for every natural number
n ∈ N together with source and target functions

src, tgt : Xn+1 → Xn

satisfying the duals relations:

src ◦ src = src ◦ tgt tgt ◦ src = tgt ◦ tgt .

We will call elements of Xn the n-cells of X . The k-source and k-target of an
n-cell x for k < n are the k-cells defined by

srck x = src(· · · (srcx)) tgtk x = tgt(· · · (tgtx))

We will denote by Dn the representable globular set associated to a natural
number n ∈ N, and call it the n-disk.

Bipointed globular sets are triples (X, x−, x+) consisting of a globular set
and two distinguished 0-cells x−, x+ of it. They form a category Glob⋆⋆ toether
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with morphisms of globular sets that preserve the distinguished 0-cells. By
the Yoneda lemma, this is the coslice category D

0+D
0\Glob or the category of

cospans of globular sets from D0 to itself.
The category of bipointed globular sets is locally finitely presentable as a

coslice of a presheaf topos [1, Proposition 1.57], so in particular it is complete
and cocomplete. Limits and connected colimits in Glob⋆⋆ are computed as in
Glob, i.e. they are created by the functor Glob⋆⋆ → Glob that forgets the
basepoints. The coproduct of a family of bipointed sets is computed as the wide
pushout of the corresponding maps out of D0 + D0.

Being a category of cospans, the category Glob⋆⋆ is monoidal with respect to
the composition of cospans, which we will call the wedge sum. More explicetely,
the wedge sum ∨ of a pair of bipointed globular sets (X, x−, x+) and (Y, y−, y+)
is obtained by the following pushout square in Glob,

X ∨ Y

X Y

D0 D0 D0

in1 in2

x− y−x+

x

y+

with basepoints the image of x− and the image of y+ in the pushout. The unit
of the wedge sum is given by the 0-disk D0 with both basepoints being its unique
0-cell. More generally, we will denote by

∨n
i=1Xi the iterated monoidal product

of a finite family of bipointed globular sets X1, . . . , Xn, and we will denote the
inclusion of the j-th component for 1 ≤ j ≤ n by

inj : Xj →

n
∨

i=1

Xj.

This is a morphism of globular sets, that is only a morphism of bipointed globular
sets for n = 1.

The suspension of a globular set X is the bipointed globular set ΣX with
two 0-cells v− and v+, and with positive dimensional cells given by

(ΣX)n+1 = Xn

for every n ∈ N. The source and target maps of an n-cell of ΣX for n > 2
is given by its source and target in X , while the source and target of 1-cells
are given by v− and v+ respectively. The basepoints of the suspensions are v−
and v+. Suspension is left adjoint to the path space functor Ω: Glob⋆⋆ → Glob
sending a bipointed globular set (X, x−, x+) to the globular set given by

Ω(X, x−, x+)n = {x ∈ Xn+1 | src0(x) = x− and tgt0(x) = x+}

The unit of the adjunction is the identity of the functor

ΩΣ = id,
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while the counit κ : ΣΩ ⇒ id is the natural transformation with components
the bipointed morphisms

κ : ΣΩ(X, x−, x+) → (X, x−, x+)

given by the subset inclusions Ω(X, x−, x+)n ⊆ Xn+1.
Finally, we have introduced all the ingredients to define globular pasting

diagrams and the family parametrising them. We will call elements of that
family Batanin trees following Dean et al [11].

Definition 1. A Batanin tree is a list br[B1, . . . , Bn], where the Bi are Batanin
trees.

In other words, the set Bat of Batanin trees is the carrier of the initial algebra
of the list endofunctor List : Set → Set given by

ListX =
∐

n∈N

Xn

with the obvious action on morphisms. In particular, there exists a tree br[]
corresponding to the empty list, and using this tree, we can define more compli-
cated trees, such as the tree

B = br[br[br[], br[]], br[]].

It is convenient to visualise Batanin trees as planar trees by representing br[]
as a tree with one root and no branches, and br[B1, . . . , Bn] as a tree with a
new root and n branches, each of which is connected to the root of the tree
corresponding to Bi. For example, the tree B above can be visualised as

• •

• •

•

The dimension of a Batanin tree is the height of the corresponding planar
tree, or equivalently the maximum of the dimension of the cells in the correspond-
ing globular pasting diagram, defined below. It can be computed recursively by

dim(br[B1, . . . , Bn]) = max(dimB1 + 1, . . . , dimBn + 1).

In particular, it follows that br[] is the unique tree of dimension 0.

Definition 2. The bipointed globular set of positions of a Batanin tree B is the
bipointed globular set Pos(B) defined recursively by

Pos(br[B1, . . . , Bn]) =
n
∨

i=1

ΣPos(Bi).

The globular pasting diagram of a Batanin tree B is the underlying globular set
of Pos(B), according to the fomulae in [20, Appendix F.2].
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A way to calculate the globular set of positions of a tree is described in [9],
where positions correspond to sectors of the tree, i.e. the spaces between two
consecutive branches at each node, as well as the space before the first branch
and the one after the last one. Under this description, the basepoint are given
by the left-most and right-most sector at the root. For the tree B above, we
can label the position as follows.

a
•

b
•

• •

•

f g h k

x y z

The dimension of a position is given by the distance of the node it is attached in
from the root, while its source and target are given by the positions right below
it. Therefore, the globular set of positions of B is the following globular set

x y zg

f

h

⇓ a

⇓ b

k

which is bipointed by the positions x and z respectively. Here, the positions
f, g, h, a, b are the positions of the left branch of B, while k is the position
of its right branch. The dimension of those positions has been raised by the
suspension operation. The 0-positions x, y, z are the new cells created by the
suspension operation. The two basepoints of Pos(B) are given by x and z.

Definition 3. The k-boundary of a Batanin tree B is the tree ∂kB defined
recursively by

∂0B = br[]

∂k+1 br[B1, . . . , Bn] = br[∂kB1, . . . , ∂kBn]

The k-boundary of a tree B is the tree obrained by removing all nodes of B
whose distance from the root is at least k. In terms of pasting diagrams, this
amounts to removing all cells of dimension more than k and identifying all
parallel k-cells. For example, the 1-boundary of the tree B considered above is
the following tree.

∂1B =

• •

•

Pos(∂1B) = • • •

The positions of the boundary can be included back into the positions of the
original tree in two ways, the source and target inclusions

sBk , t
B
k : Pos(∂kB) → Pos(B)

7



defined recursively as follows: the morphisms sB0 and tB0 out of D0 ∼= Pos(br[])
select the first and second basepoint respectively, while for B = br[B1, . . . , Bn]
the morphisms sBk+1 and tBk+1 are given by

sBk+1 =

n
∨

i=1

Σ sBi

k tBk+1 =

n
∨

i=1

Σ tBi

k .

In particular, the source and target inclusions are morphisms of bipointed glob-
ular sets when k > 0.

As an illustration for Batanin tree and pasting schemes, we consider a few
important families of Batanin trees, for which we also illustrate a few of the
corresponding globular pasting diagrams for visualisation:

Example 4. We define the k-dimensional disk tree Dk recursively on k by

D0 = br[] Dk+1 = br[Dk].

A simple inductive argument shows that Pos(Dk) ∼= Dk.

Example 5. We now define a family of Batanin trees that are the arities of the
binary compositions in ω-categories. We define first for n,m > 0,

Bn,0,m = br[Dn, Dm] Pos(Bn,0,m) ∼= D
n ∨ D

m.

A few low-dimensional globular pasting diagrams in this family are illustrated
below

Pos(B1,0,1) Pos(B2,0,1) Pos(B3,0,3)

• • • • • •⇓ • • •⇓⇛⇓ ⇓⇛⇓

We then define recursively on k the family

Bn,k,m = br[Bn−1,k−1,m−1]

for every n,m > 0 and 0 ≤ k < min(n,m). Using that the suspension preserves
representables and connected colimits, we conclude that

Pos(Bn,k,m) ∼= D
n ∐Dk D

m

where the pushout is over the target and source inclusions respectively. We
illustrate some of the globular pasting diagrams in this family below.

Pos(B2,1,2) Pos(B3,1,2) Pos(B3,2,3)

• •
⇓

⇓
• •

⇓⇛⇓

⇓
• •⇓⇛⇓⇛⇓

A simple induction shows that the dimension of the Batanin tree Bn,k,m is given
by

dim(Bn,k,m) = max(n,m)

8



3 Computads and ω-categories

Dean et al. [11] recently presented a new definition of ω-categories and their
computads, inspired by the type-theoretic definition of Finster and Mimram [12],
and they showed that their notion of ω-category coincides with the operadic
definition of Leinster [20]. In this approach, first a category of computads Comp
is defined together with an adjunction

Free : Glob ⇄ Comp: Cell

and then ω-categories are defined as algebras for the monad

T : Glob → Glob

induced by the adjunction. We recall that morphisms of computads here are
strict ω-functors, and not Batanin’s morphisms of computads [4]. In other words,
the comparison functor

KT : Comp → ωCat

is fully faithful and injective on objects.
We will briefly recall the definition of computads and the Free ⊣ Cell adjunc-

tion. First, categories Compn of n-computads are defined recursively for every
natural number n ∈ N, together with forgetful functor

un : Compn → Compn−1

for n > 0. In the same mutual recursion, functors

Freen : Glob → Compn

Celln : Compn → Set

Sphn : Compn → Set

are defined and natural transformations

bdryn : Celln ⇒ Sphn un

pri : Sphn ⇒ Celln

for i = 1, 2. Here the functors Celln and Sphn return the set of n-cells, and
the set of pairs of parallel n-cells of the ω-category generated by a computad C,
while bdryn returns the source and the target of an n-cell.

An n-computad is a triple C consisting of an (n− 1)-computad Cn−1, a set
of n-dimensional generators V C

n and an attaching function

φCn : V C
n → Sphn−1(Cn−1)

assigning to each generator a source and target. A morphism σ : C → D con-
sists of a morphism σn−1 : Cn−1 → Dn−1 and a function σn,V : V C

n → CellnD
compatible with the source and target functions in the sense defined in [11, Sec-
tion 3.1]. The forgetful functors un are the obvious projections. As a base case
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for this definition, here we let Comp−1 be the terminal category and Sph−1 the
functor choosing some terminal set.

The set Celln C of n-cells of a computad C is inductively defined together
with the set of morphisms with target C and the function bdryn,C . Cells of

C are either of the form var v for a generator v ∈ V C
n , or when n > 0, they

are coherence cells coh(B,A, τ), where B is a tree of dimension at most n, A is
an (n− 1)-sphere of Freen−1 Pos(B), satisfying a fullness condition that will be
explained below, and τ : Freen Pos(B) → C is a morphism. The boundary of a
cell is given recursively by the formula

bdryn,C(var v) = φCn (v)

bdryn,C(coh(B,A, τ)) = Sphn−1(τn−1)(A)

The functor Freen sends a globular set X to the computad

FreenX = (Freen−1X,Xn, φ
X
n ) φXn (x) = (var(srcx), var(tgt x)),

and a morphism f : X → Y to the morphism consisting of Freen−1 f and var ◦fn.
The functor Sphn sends an n-computad C to the set

Sphn C = {(a, b) ∈ Celln C × Celln C | bdryn a = bdryn b}

and acts on morphisms in the obvious way. The projection natural transforma-
tions are the obvious ones. We will denote by

src, tgt : Celln ⇒ Celln−1 un

the composite of bdryn with the projections.
The fullness condition mentioned above for A = (a, b) ∈ Sphn Freen Pos(B)

is a condition on the generators used to define a and b. It is equivalent to the
statement that

a = Celln Freen(s
B
n )(a

′) b = Celln Freen(t
B
n )(b

′)

for cells a′, b′ of Freen Pos(∂nB) using all generators of ∂nB. That means that
the support of a′, b′ contains all positions of ∂nB, where the support of an n-cell
c over a computad C is the set of generators defined by

supp(var v) =

{

{v}, when n = 0

{v} ∪ supp(pr1 φ
C
n (v)) ∪ supp(pr2 φ

C
n (v)), when n > 0

supp(coh(B,A, τ)) =
⋃

k≤n

⋃

v∈Posk(B)

supp(τk,V (v))

This completes the inductive definition. The category Comp of computads
is the limit of the categories Compn for all n ∈ N, i.e computads C = (Cn)n∈N

are sequences of n-computads Cn such that un+1Cn+1 = Cn, and moprhisms of
such are sequences of morphisms. The free functor

Free : Glob → Comp
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is the functor with components Freen for all n ∈ N, while the cell functor

Cell : Comp → Glob

sends a computad C to the globular set consisting of Celln Cn for all n ∈ N, and
the source and target functions defined above. The unit and the counit of the
adjunction

η : id ⇒ Cell Free

ε : FreeCell ⇒ id

are described as follows: The unit η sends a cell x of a globular set X to the
generator varx, the counit ε consists of the morphisms εC : FreeCellC → C
given for all n ∈ N by the identities of the set

V FreeCellC
n = Celln C.

By definition, ω-categories are algebras for the monad (T, µ, η) on Glob in-
duced by the adjunction Free ⊣ Cell. In particular, there exists a free/underlying
adjunction

FT : Glob ⇄ ωCat : UT

between globular sets and ω-categories, and there exists a comparison functor

KT : Comp → ωCat

sending a computad C to the ω-category (CellC,Cell εC). Moreover, KT is a
morphism of adjunctions meaning that

FT = KT Free Cell = UTKT ,

and it is fully faithful [11, Proposition 4.6].

3.1 Binary compositions in ω-categories

The aim of this section is to illustrate this definition by describing the binary
compositions of ω-categories. To achieve this, we construct a cell compn,k,m of
dimension max(n,m) in the free ω-category on the globular pasting diagram
Pos(Bn,k,m), introduced in Example 5. By the pushout formulae in Example 5,
morphisms of ω-categories f : T Pos(Bn,k,m) → X correspond precisely to pairs
of an n-cell c and anm-cell c′ in X such that tgtk(c) = srck(c

′). The k-composite
of c and c′ is then defined to be the cell

c ∗k c
′ = f(compn,k,m).

The rest of the operations of ω-categories can be obtained in a similar way, by
defining specific cells in well-chosen computads. This is in particular the case
for associators, unitors and interchangers. We now define the cells compn,k,m
starting from simpler cases and building up towards the general case.
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We first define the cell comp1,0,1. By the pushout formula, we visualise the
globular pasting diagram Pos(B1,0,1) as follows:

x y z
f g

,

we then define the 1-cell of Free Pos(B1,0,1)

comp1,0,1 := coh(B1,0,1, (varx, var z), id),

with source varx and target var z. Similarly, we use that ∂kBk+1,k,k+1 = Dk to
define the cell

compk+1,k,k+1 := coh(Bk+1,k,k+1, (var xk+1, var zk+1), id),

where xk+1 and zk+1 are respectively the images of the top-dimensional cell of
the disk Pos(Dk) under the source and target inclusions Pos(Dk) → Pos(Bk+1,k,k+1)
defined in Section 2. The source and target of compk+1,k,k+1 imply that the
source of c ∗k c

′ is src(c) and its target is tgt(c′), as expected of composition
operations.

We then proceed to define the n-cell compn,k,n recursively on n − k. The
base case n = k + 1 has been defined above. For n > k + 1, we have that
∂n−1Bn,k,n = Bn−1,k,n−1. We then define the cell compn,k,n to be

coh(Bn,k,n, (T (s
Bn,k,n

n−1 )(compn−1,k,n−1), T (t
Bn,k,n

n−1 )(compn−1,k,n−1)), id).

It follows from this definition that the source and target of the k-composite
c ∗k c

′ are respectively the k-composite of the sources and the k-composite of
the targets.

Finally, we define the cell compn,k,m for arbitrary n 6= m and k < min(n,m).
When n > m, we have that ∂n−1Bn,k,m = Bn−1,k,m, and we define recursively
the n-cell compn,k,m to be

coh(Bn,k,m, (T (s
Bn,k,m

n−1 )(compn−1,k,m), T (t
Bn,k,m

n−1 )(compn−1,k,m)), id).

When n < m, we construct the m-cell compn,k,m in a similar way. The binary
k-composite c ∗k c

′ is the whiskering of an n-cell with an m-cell. Its source and
target are the k-composites of the source and target of the higher dimensional
cell with the lower dimensional one. In the following sections, we will see that
leveraging the suspension and opposite operations, the construction of the cells
compn,k,m can be significantly simplified.

4 The suspension and hom functors

Strict ω-categories are precisely categories enriched over strict ω-categories, so
for every strict ω-category X and every pair of 0-cells x−, x+ ∈ X0, the globular
set Ω(X, x,x+) of cells from x− to x+ admits an ω-category structure in a functo-
rial way [20]. The same result was recently proven for arbitrary ω-categories [10]
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using the operadic definition of Leinster. We provide an elementary construction
of hom ω-categories, and show that it preserves the property of being free on
a computad. This diverges from strict ω-categories, where the Eckmann-Hilton
argument is an obstruction to freeness of hom ω-categories.

Recall that the hom functor Ω : Glob⋆⋆ → Glob, taking a bipointed globular
set to the globular set of cells from the first base-point to the second one admits
a left adjoint, the suspension functor, Σ : Glob → Glob⋆⋆ with unit the identity
and counit κ : ΣΩ ⇒ id given by subset inclusions. Our goal in this section will
be to lift this adjunction to computads and to ω-categories.

4.1 The suspension of a computad

Let Comp⋆⋆ be the category of computads with two chosen 0-cells and mor-
phisms preserving those 0-cells. By the Free ⊣ Cell adjunction and the Yoneda
lemma, this is precisely the slice of Comp under Free(D0 + D0). Moreover, the
adjunction descends to the slices to give an adjunction

Free⋆⋆ : Glob⋆⋆ ⇄ Comp⋆⋆ : Cell⋆⋆

where Free⋆⋆(X, x−, x+) is the computad FreeX with the 0-cells varx− and
varx+, and Cell⋆⋆(C, c−, c+) is the globular set CellC with the basepoints c−
and c+ respectively. We now define a suspension functor

Σ : Comp → Comp⋆⋆

which generalises the suspension of globular sets.
We define first the suspension of a Batanin tree B to be the Batanin tree

ΣB = br[B]

since by definition
Pos(ΣB) = ΣPos(B).

We will then proceed inductively on n ∈ N to define a functor and two natural
transformations

Σ : Compn → Compn+1

ΣCell : Celln ⇒ Celln+1 Σ

ΣSph : Sphn ⇒ Sphn+1 Σ

satisfying the following properties:

(s1) the suspension commutes with the forgetful functors, and the inclusion of
globular sets into computads:

Compn+1 Compn+2

Compn Compn+1

un+1 un+2

Σ

Σ

Compn Compn+1

Glob Glob

Freen Freen+1

Σ

Σ

13



(s2) the natural transformations are compatible with the boundary natural
transformations:

Celln+1 Celln+2 Σ

Sphn un+1 Sphn+1 Σun+1 Sphn+1 un+1 Σ

bdryn+1

ΣSph un+1

ΣCell

bdryn+1 Σ

(s3) the natural transformations are compatible with the projection natural
transformations for i = 1, 2:

Sphn Sphn+1 Σ

Celln Celln+1 Σ

pri Σpri

ΣCell

ΣSph

(s4) the natural transformation ΣCell preserves generators, in that for every
globular set X and x ∈ Xn, we have that

ΣCell(varx) = varx

(s5) the natural transformation ΣSph preserves fullness, in that for every full
n-sphere A of Free Pos(B), we have that ΣSphA is a full (n+1)-sphere of
Free Pos(ΣB).

To start the induction, we recall that Comp−1 is the terminal category and
that Comp0 is the category Set of sets. The suspension functor is defined as
the functor picking the 2-element set {v−, v+}. We recall also that the unique
(−1)-computad has a unique (−1)-sphere. We define ΣSph to be the natural
transformation picking the 0-sphere (v−, v+). This concludes the base case. We
will now assume that we have defined the the data satisfying the properties we
have cited, up to dimension n− 1, for a fixed n ∈ N.

Computads. We will first define the functor Σ on all objects: Given an
n-computad C = (Cn−1, V

C
n , φCn ), its suspension is the (n + 1)-computad con-

sisting of ΣCn−1, the same set of generators, and the attaching function φΣC
n+1

given by the composite

φΣC
n+1 : V C

n

φC
n−−→ Sphn−1 Cn−1

ΣSph

−−−→ Sphn ΣCn−1

By definition, the suspension functor on objects commutes with the forgetful
functors. Using that the suspension functor on (n − 1)-computads commutes
also with the inclusion of globular sets, and that ΣCell and hence ΣSph preserve
generators, we see that the suspension functor on n-computads also commutes
with the inclusions.

14



Cells and morphisms. We then define the suspension of a morphism of n-
computads together with the natural transformation ΣCell mutually inductively,
while showing that Property (s2) holds. Given a computad C, we define mu-
tually recursively ΣCell

C and the morphism and Σ(σ) for every σ with target C.
For a generator v ∈ V C

n , we let

ΣCell
C (var v) = var v,

and we compute that

(bdryn+1,ΣC ΣCell
C )(var v) = φΣC

n+1(v) = (ΣSph
Cn−1

bdryn,C)(var v).

For a coherence n-cell c = coh(B,A, τ) of C, we let

ΣCell
C (coh(B,A, τ)) = coh(ΣB,ΣSphA,Σ τ)

using that the suspension commutes with Freen and Pos(−), and that it pre-
serves fullness. Then by naturality of ΣSph, we compute that

(bdryn+1,ΣC ΣCell
C )(coh(B,A, τ)) = (ΣSph

Cn−1
bdryn,C)(coh(B,A, τ)).

For a morphism σ : D → C, we let Σσ : ΣD → ΣC consist of Σσn−1 and the
function

(Σσ)V : V ΣD
n+1 = V D

n

σV−−→ Celln(C)
ΣCell

C−−−→ Celln+1 ΣC

This is a well-defined morphism by the observation on the boundary of ΣCell.
Functoriality of the suspension, and naturality of ΣCell can be shown mutually
inductively.

Spheres. Finally, the natural transformation ΣSph is defined for a computad
C and an n-sphere A = (a, b) of it again by

ΣSph(a, b) = (ΣCell a,ΣCell b).

We observe that those (n+ 1)-cells are parallel again by Property (s2).

Fullness. To finish the induction, it remains to show that for every Batanin
tree B and full n-sphere A = (a, b) of Freen Pos(B), the sphere ΣSphA is full in
Freen+1 Pos(ΣB). To show that, we first let

a = Celln Freen(s
B
n )(a0) b = Celln Freen(t

B
n )(b0),

where the support of a0 and b0 contains all positions of ∂nB. Then ΣSphA
consists of the cells

a′ = ΣCell(Celln Freen(s
B
n )(a0))

= Celln ΣFreen(s
B
n )(Σ

Cell(a0))

= Celln Freen(Σ s
B
n )(Σ

Cell(a0))

= Celln Freen(s
ΣB
n+1)(Σ

Cell(a0))

b′ = Celln Freen(t
ΣB
n+1)(Σ

Cell(b0)),
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so it remains to show that when the support of a contains all positions of a tree
B, then the support of ΣCell a contains all positions of ΣB. More generally, it
suffices to prove that for every computad C and every cell c ∈ Celln C,

supp(ΣCell(c)) = supp(c) ∪ {v−, v+}.

This statement can be easily shown by structural induction on cells.

Infinite-dimensional computads. This concludes the induction on n ∈ N.
Compatibility of the suspension functors with the forgetful functors allows us
to define a functor

Σ : Comp → Comp⋆⋆

sending a computad C = (Cn)n∈N to the computad with components

(ΣC)0 = {v−, v+} (ΣC)n+1 = ΣCn,

and with basepoints var v− and var v+. By construction, this functor commutes
with the suspension operation on globular sets, in that the following square
commutes:

Comp Comp⋆⋆

Glob Glob⋆⋆Σ

Σ

Free Free⋆⋆

Moreover, Property (s2) shows that the natural transformations ΣCell can be
combined to a natural transformation

ΣCell : ΣCell ⇒ Cell⋆⋆ Σ .

Example 6. The suspension of the treeBn,k,m of Example 5 is the tree ΣBn,k,m =

Bn+1,k+1,m+1. Moreover, applying the natural transformation ΣCell to the cell
compn,k,m defined in Section 3.1 yields the cell

ΣCell(compn,k,m) = compn+1,k+1,m+1 .

It follows that any cell of the form compn,k,m can be obtained by iteratively
suspending one of the form compr,0,s.

4.2 Hom ω-categories

We can define bipointed ω-categories similarly to bipointed globular sets and
bipointed computads. Alternatively, the adjunction

Free⋆⋆ : Glob⋆⋆ ⇄ Comp⋆⋆ : Cell⋆⋆

gives rise to a monad T ⋆⋆ on bipointed globular sets, sending a bipointed globu-
lar set (X, x−, x+) to the globular set TX with basepoints varx− and varx+. It
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can be shown that its category of algebras is the category ωCat⋆⋆ of bipointed
ω-categories.

Whiskering the natural transformation ΣCell on the right with Free and
using compatibility of the suspension with the functor Free, we get a natural
transformation

ΣT : ΣT ⇒ T ⋆⋆Σ .

Equivalently, by the mate correspondence [17, Proposition 2.1], we get a natural
transformation

ΩT = (ΩT ⋆⋆κ) ◦ (ΩΣT Ω) : T Ω ⇒ ΩT ⋆⋆.

We will show that this (Ω,ΩT ) is a morphism of monads, meaning that the
following diagrams commute:

T Ω ΩT ⋆⋆

Ω

ΩT

ηΩ Ω η

TT Ω T ΩT ⋆⋆ ΩT ⋆⋆T ⋆⋆

T Ω ΩT ⋆⋆

T ΩT ΩT T⋆⋆

ΩµµΩ

ΩT

By the mate correspondence, commutativity of those diagrams is equivalent to
the commutativity of the following ones:

ΣT T ⋆⋆ Σ

Σ
Σ η ηΣ

ΣT

ΣTT T ⋆⋆ΣT T ⋆⋆T ⋆⋆Σ

ΣT T ⋆⋆Σ

ΣT T T⋆⋆ ΣT

µΣΣµ

ΣT

The left one commutes, since ΣCell preserves generators. The right one is ob-
tained from the following diagram by whiskering on the right with Free:

ΣT Cell T ⋆⋆ΣCell T ⋆⋆Cell⋆⋆ Σ

ΣCell Cell⋆⋆ Σ

ΣCell FreeCell
T⋆⋆ ΣCell

Cell⋆⋆ εΣΣCell ε

ΣCell

Cell⋆⋆ Σ ε
(1)

This diagram commutes by naturality of ΣCell and commutativity of the follow-
ing diagram

ΣFreeCell Σ

Free⋆⋆ ΣCell Free⋆⋆ Cell⋆⋆ Σ

Σ ε

Free⋆⋆ ΣCell

εΣ

This can be checked easily by showing that both sides agree on generators.

Definition 7. Consider a bipointed ω-category (X,α : TX → X, x−, x+). Its
hom ω-category is the ω-category that consists of the globular set Ω(X, x,x+)
and the structure morphism

T Ω(X, x,x+)
ΩT

−−→ ΩT ⋆⋆X
Ωα
−−→ Ω(X, x,x+)
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As shown by Street [24], and explained by Leinster [20, Theorem 6.1.1], this
definition extends to a functor

Ω : ωCat⋆⋆ → ωCat,

since (Ω,ΩT ) is a morphism of monads. By construction, this functor makes
the following solid square commute:

ωCat⋆⋆ ωCat

Glob⋆⋆ GlobΩ

Ω

UTUT⋆⋆

Σ

Σ

Example 8. In light of the ω-category structure on the hom globular set, the
last equation of Example 6 can be understood in particular as saying that the
vertical composite of two 2-cells x, y in an ω-category X can be described as
the composite of the 1-cells x, y in the hom ω-category Ω(X, srcx, tgt x). Sim-
ilar reasoning also shows that the associators and unitors for the composition
of 1-cells in the hom ω-category Ω(X, srcx, tgt x) yields through the natural
transformation ΣCell associators and unitors for the vertical composition in X.

Suspension. The category of bipointed ω-categories is cocomplete being the
category of algebras of a finitary monad on a locally presentable category, and
the vertical functors in this commuting square are monadic. Therefore, by
the adjoint lifting theorem [16], the hom ω-category functor also admits a left
adjoint Σ that commutes with the free functors FT⋆⋆

and FT . We will show that
restricting the left adjoint to the subcategory of computads gives the suspension
functor defined before, in the sense that the following diagram commutes up to
isomorphism:

ωCat⋆⋆ ωCat

Comp⋆⋆ CompΣ

Σ

KT⋆⋆
KT

Since the suspension of an ω-category is defined as a left adjoint, commutativity
of this square amounts to showing for every computad C and every bipointed
ω-category (Y, y−, y+) that there exists a natural bijection

ψ : ωCat⋆⋆(KT⋆⋆

(ΣC), Y )
∼
−→ ωCat(KTC,ΩY )

We claim that such a bijection is given by

ψ(f) = Ω(f ◦ ΣCell
C ) : KTC → ΩY

First of all, we need to check that ψ(f) is a morphism of ω-categories for every
morphism of bipointed ω-categories f . This amounts to commutativity of the
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exterior of the following diagram

T CellC T ΩΣCellC T ΩCell⋆⋆ ΣC T ΩY

ΩT ⋆⋆Cell⋆⋆ ΣC ΩT ⋆⋆Y

CellC ΩΣCellC ΩCell⋆⋆ ΣC ΩY

T ΩΣCell T Ω f

ΩT

Ω fΩΣCell

Cell(εC)
ΩT⋆⋆f

ΩCell⋆⋆(εΣ C)

ΩT

where the unnamed morphism T ⋆⋆Y → Y is the T ⋆⋆-algebra structure of Y .
The left square in this diagram commutes, being the transpose of diagram (1).
The top square commutes by naturality, and the bottom square commutes by
f being an algebra morphism. Therefore, ψ(f) is well-defined.

To show that ψ is bijective, we use that morphisms out of a computad
are determined by their values on generators [11, Corollary 6.5]. Assume that
ψ(f) = ψ(g) for a pair of morphisms of bipointed ω-categories. Then f and
g agree on the 0-dimensional generators being bipointed, and they agree on
positive-dimensional ones by ΩΣCell being a bijection on the generators. There-
fore, f = g. For surjectivity, given a morphism h : KTC → ΩY , we define
inductively a sequence of morphisms fn : KT

n (ΣC)n → Y by letting f0 being
the unique morphism determined by f(v±) = y± and fn+1 being the morphism
induced by fn and the function

V ΣC
n+1 = V C

n
var
−−→ Celln C

h
−→ (ΩY )n →֒ Yn+1

Finally, we let f : KT (ΣC) → Y be the morphisms out of the colimits induced
by the fn. Then by construction ψ(f) and h agree on generators, so they must
be equal.

4.3 The hom of a computad.

In this section, we show that the hom ω-category functor preserves the property
of being free on a computad. This is contrary to the case of strict ω-categories:
consider for instance the strict ω-category freely generated on the computad
Ceh with only one object x, and two generators a, b : idx → idx of dimension
2. By the Eckmann-Hilton argument, the composition of 1-cells in Ω(Ceh, x, x)
is commutative, which prevents it from being free on a computad.

We will show that ΩKT⋆⋆

C is free on a computad when C is a bipointed
computad for weak ω-categories. To do so, we construct a computad ΩC on
which it is free. The generators of ΩC are precisely the indecomposable cells of
the ω-category ΩKTC:

Definition 9. An n-cell of an ω-category X = (X,α : TX → X) is indecom-
posable when it is not of the form α(coh(B,A,Freeσ)) for any Batanin tree B,
full (n − 1)-type A and morphism σ : Pos(B) → X . We will denote the set of
indecomposable n-cells by X ind

n .
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Using the indecomposable cells of an ω-category X, we can build a computad
CX together with a morphism σX : KTCX → X. We start inductively by letting
CX,−1 the unique −1-computad and σX,−1 : KT

−1CX,−1 → X the unique mor-
phism from the initial ω-category. We then define the n-computad CX,n to be
the triple (CX,n−1, V

X
n , φ

X
n) defined via the following pullback square

V X
n X ind

n

Xn

Sphn−1(CX,n−1) Parn−1(X)
(σX,n−1,σX,n−1)

(src,tgt)

σind
X,n,V

φX

n

p

(2)

where Parn−1X is the set of pairs of parallel (n− 1)-cells of X . The morphism
σX,n : KT

nCX,n → X is the one determined by σX,n−1 and the function V X
n → Xn

in the diagram above. Finally, we define CX to consist of the computads CX,n,
and we let σX to be the morphism out of the colimit induced by the morphisms
σX,n.

Proposition 10. For every bipointed computad C, the ω-category ΩKT⋆⋆

C is
free on a computad.

Proof. Let X = ΩKT⋆⋆

C. We will show that the morphism σX is an isomor-
phism, or equivalently that it is bijective on all cells. We proceed by strong
induction on the dimension of cells. Let therefore n ≥ 0 and suppose that the
result holds for all k < n. Since the inclusion KT

n−1Cn−1 → KTC is the identity
on cells of dimension at most (n − 1), the bottom morphism of the square (2)
must be an isomorphism, and hence the top one should be as well. This implies
that σX is injective on generator n-cells.

This shows that σX is injective on 0-cells. If n > 0, then we can see that σX
sends a coherence n-cell c = coh(B,A, τ) to the decomposable n-cell:

σX(c) = σX(coh(B,A, ε ◦ Free τ
†))

= (σX ◦ Cell(ε))(coh(B,A,Free τ†))

= (αX ◦ Cell FreeσX)(coh(B,A,Free τ
†))

= αX(coh(B,A,Free(σXτ
†)))

where τ† : Pos(B) → Cell FreeC the transpose of τ under the Free ⊣ Cell
adjunction. As σX sends generators to indecomposable cells, it can not send a
generator and a coherence to the same cell.

Finally, to show that σX is injective on n-cells, it remains to show that it is in-
jective on coherence cells. For that, let c = coh(B,A, τ) and c′ = coh(B′, A′, τ ′)
and suppose that

σX(c) = σX(c
′).
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From the definition of αX, we can compute further that

σX(c) = (ΩCell⋆⋆(εC)(ΩT
⋆⋆κCell⋆⋆ C)(ΩΣT

ΩCell⋆⋆ C))(coh(B,A,Free(σXτ
†)))

= (ΩCell⋆⋆(εC)(ΩT
⋆⋆κCell⋆⋆ C))(coh(ΣB,Σ

SphA,ΣFree(σXτ
†)))

= coh(ΣB,ΣSphA, εC Freeκ ◦ ΣFree(σXτ
†))

= coh(ΣB,ΣSphA, εC ◦ Free(κ ◦ Σ(σXτ
†)))

so from the equality above and injectivity of the constructor coh, we get that
ΣB = ΣB′, that ΣSphA = ΣSphA′, and that the corresponding morphisms
agree. The suspension is injective on trees by injectivity of br[], so B = B′.
The equality of morphisms implies that σXτ

† = σXτ
′† by transposing along the

adjunction Free ⊢ Cell and Σ ⊢ Ω. By structural induction on the n-cells, we
may assume that σX is injective on the n-cells in the image of τ† from which we
conclude that τ† = τ ′† and hence that τ = τ ′. Finally by structural induction,
we can see that ΣCell and ΣSph are monic, so A = A′ and c = c′.

To show that σX is surjective on n-cells, we proceed by structural induction
on the cells. Since the function σind

X,n,V is bijective, every indecomposable n-cell
is in the image of σX. Suppose therefore that c ∈ Xn can be decomposed in the
form

c = αX(coh(B,A,Free τ)) = coh(ΣB,ΣSphA, εC ◦ Free(κ ◦ Σ τ)).

By structural induction, we may assume that for every position p ∈ Posk(B),
there exists a cell τ ′(p) ∈ Celln(CX) such that

τ(p) = σX(τ
′(p))

By injectivity of σ on cells of dimension at most k, those cells are unique and
they can be assembled into a morphism τ ′ : Pos(B) → Cell(CX) such that
τ = σXτ

′. Using this morphism and the calculations above, we see that

c = αX(coh(B,A,Free(σXτ
′))) = σX(coh(B,A, ε ◦ Free τ

′)),

so σX is surjective on n-cells.

Corollary 11. The assignment C 7→ CΩKT⋆⋆
C extends to a functor

Ω : Comp⋆⋆ → Comp

making the following two diagrams commute up to isomorphism:

ωCat⋆⋆ ωCat

Comp⋆⋆ Comp

KT⋆⋆
KT

Ω

Ω

Comp⋆⋆ Comp

Glob⋆⋆ Glob

Ω

Cell⋆⋆ Cell

Ω
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Proof. Since the comparison functor KT is fully faithful, for every morphism of
computads τ : C → D, we define Ω τ to be the unique morphism making the
following diagram commute:

KT ΩC ΩKT⋆⋆

C

KT ΩD ΩKT⋆⋆

D

σ
∼

KT Ω τ ΩKT⋆⋆
τ

σ
∼

Remark 12. In general, the hom computad functor does not preserve finite-
ness. For example, consider the computad FreeD0 with only one 0-dimensional
generator x. The hom computad Ω(FreeD0, x, x) has a countable number of
0-dimensional generators, corresponding to the identity of x and possible ways
it can be composed.

5 Opposites

An important feature of ordinary category theory is the duality stemming from
the existence of opposite categories. This feature extends to higher categories,
where we may define opposites by reversing the direction of all cells in certain
dimensions. In this section, we will define the opposite of a globular set, a
computad, and an ω-category with respect to a set of dimensions w ⊆ N>0,
using the same technique as in the previous section. We will then show that the
formation of opposites in all those cases gives rise to an action of the Boolean
group

G = P(N>0) ∼= Z
N>0

2

of subsets of the positive integers with respect to symmetric difference. This
group is clearly isomorphic to the group of functions N>0 → Z2 with pointwise
multiplication, where each subset is identified with its indicator function. Abus-
ing notation we will identify a subset w with its indicator function, and write
w(n) for the value of the indicator function at n ∈ N>0.

5.1 The opposite of a globular set

The group G acts on the category G of globes by swapping the source and target
inclusions. More precisely, an element w ∈ G acts as the identity-on-objects
functor

opw : G → G

given on the generating morphisms by

opw(sn) =

{

tn if n+ 1 ∈ w,

sn if n+ 1 6∈ w,
opw(tn) =

{

sn if n+ 1 ∈ w,

tn if n+ 1 6∈ w.
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The functor op∅ is clearly the identity functor. Moreover, for every pair of
elements w,w′ ∈ G, we can easily check that

opw opw′ = opww′

so the assignment w 7→ opw is a group homomorphism G→ Aut(G). Since the
group G is Abelian, this action extends to an action on the category Glob of
globular sets by precomposition

op: G→ Aut(Glob)

opw(X) = X ◦ opw .

The opposite opwX of a globular set X therefore has the same cells as X , with
the source and target of n-cells reversed for n ∈ w.

Since pasting diagrams are bipointed by their 0-source and 0-target inclu-
sions, it will be useful to further extend this action to an action on bipointed
globular sets

op: G→ Aut(Glob⋆⋆)

by letting opw take a bipointed globular set (X, x−, x+) to the opposite globular
set opwX with the same basepoints when 1 6∈ w, and with the basepoints
swapped otherwise.

Lemma 13. For every w ∈ G, there exists a natural isomorphism

opΣw : Σ ◦ opw−1 ⇒ opw ◦Σ

where w−1 ∈ G is the sequence defined by (w−1)(n) = w(n+1). Moreover, opΣ∅
is the identity natural transformation, and for every pair of elements w,w′ ∈ G,
the following diagram commutes:

Σopw−1 opw′−1 opw Σopw′−1 opw opw′ Σ

Σopww′−1 opww′ Σ

opΣ
w opw′−1 opw opΣ

w′

opΣ
ww′

Proof. For every globular set X , the bipointed globular sets Σopw−1X and
opw ΣX have the same sets of cells. Moreover, the source and target of an
n-cell in both of them agree when n > 2: they are given by the target and
source functions of X respectively when n ∈ w, and they are given by the
source and target functions of X when n 6∈ w. The source and target of a 1-cell
in the first one are given by v− and v+ respectively, while in the latter it is
given by those when 1 6∈ w, and by v+ and v− when 1 ∈ w. Therefore, we may
define an isomorphism of globular sets

opΣw,X : Σ opw−1X → opw ΣX

to be the identity on positive-dimensional cells, and to be given on 0-cells by

opΣw,X(v±) =

{

opΣw,X(v∓), if 1 ∈ w,

opΣw,X(v±), if 1 6∈ w.
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Since opw reverses the basepoints if and only if 1 ∈ w, we see that this is a
morphism of bipointed globular sets. Naturality of these morphisms follows
easily by the fact that it is the identity of positive-dimensional cells. Finally,
the claimed diagram commutes for w,w′ ∈ G: both morphisms are identity on
positive-dimensional cells, they are the identity on 0-cells when 1 ∈ w ∩ w′ or
1 6∈ w ∪w′, and they swap the two 0-cells otherwise.

Lemma 14. For every w ∈ G and n ∈ N, there exists a natural isomorphism

op∨w :

n
∨

i=1

◦ swapw(1) ◦(opw)
n ⇒ opw ◦

n
∨

i=1

where swap0 is the identity of (Glob⋆⋆)n, while swap1 is the automorphism

swap1(X1, . . . , Xn) = (Xn, . . . , X1).

Moreover, op∨∅ is the identity natural transformation, and for every pair of
elements w,w′ ∈ G, the following diagram commutes:

∨

◦(opww′)n ◦ swapww′(1) opww′ ◦
∨

∨

◦(opw)
n ◦ (opw′)n ◦ swapw(1) ◦ swapw′(1)

∨

◦(opw)
n ◦ swapw(1) ◦(opw′)n ◦ swapw′(1)

opw ◦
∨

◦(opw′)n ◦ swapw′(1) opw op′w ◦
∨

op∨

w

opw(op∨

w′ )

op∨

ww′

Proof. Fix n ∈ N and w ∈ G and let X1, . . . , Xn be bipointed globular sets
and suppose first that 1 6∈ w, so that the basepoints of Xi and opwXi agree.
The functor opw on globular sets preserves D0, and it preserves colimits, being
an equivalence of categories. Therefore, there exists a natural isomorphism of
globular sets

op∨w :

n
∨

i=1

(opwXi) → opw

(

n
∨

i=1

Xi

)

,

that can be easily seen to preserve the basepoints. Moreover, since opw preserves
the cells of a globular set, and colimits of globular sets are computed pointwise,
we may take op∨w to be the identity.

Suppose now that 1 ∈ w, so that the functor opw swaps the basepoints.
Using that opw preserves colimits and D0, we see that opw(

∨n
i=1Xi) is the

colimit of the following diagram.

opwX1 . . . opwXn

D0 D0

xn,−x1,+
x2,− xn−1,+
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On the other hand,
∨1

i=n opwXi is the colimit of the following diagram:

opwXn . . . opwX1

D0 D0

x1,+xn,−
xn−1,+ x2,−

By symmetry of pushouts, we get a natural isomorphism of globular sets

op∨w :

1
∨

i=n

(opwXi) → opw

(

n
∨

i=1

Xi

)

that can be easily seen to preserve the basepoints. Since colimits are computed
object-wise, this isomorphism is given level-wise by the symmetry of pushouts.

Knowing how those isomorphisms are defined pointwise, we can easily deduce
that the claimed diagram commutes for every pair w,w′ ∈ G. If 1 6∈ w ∪ w′,
then both sides of the diagram are identities. If 1 ∈ w ∩ w′ again both are
identities, since the symmetry of the pushout squares to the identity. Finally,
when 1 ∈ ww′, then both sides are given by the symmetry of the pushout, so
they agree.

Using those lemmas, we can deduce that pasting diagrams are closed under
the formation of opposites: we define recursively on the Batanin tree B for every
w ∈ G the w-opposite Batanin tree opw B by the formula

opw(br[B1, . . . , Bn]) = br(swapw(1)[opw−1B1, . . . , opw−1Bn]),

where swap0 is the identity of the set of lists, while swap1 reverses a list

swap1[B1, . . . , Bn] = [Bn, . . . , B1].

The opposite tree realizes the opposite pasting diagram, in the sense that there
exists an isomorphism of bipointed globular sets

opBw : Pos(opw B) → opw(Pos(B)).

We can define this isomorphism recursively on B = br[B1, . . . , Bn] to be the
following composite

Pos(opw B) =

n
∨

i=1

swapw(1)(ΣPos(opw−1Bi))

∨
swapw(1) Σop

Bi
w−1

−−−−−−−−−−−−−→

n
∨

i=1

swapw(1)(Σ opw−1 Pos(Bi))

∨
swapw(1) op

Σ
w

−−−−−−−−−−→

n
∨

i=1

swapw(1)(opw ΣPos(Bi))

op∨

w−−→ opw

(

n
∨

i=1

ΣPos(Bi)

)

= opw(Pos(B)).
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Lemma 15. The isomorphism opB∅ is the identity for every tree B, and for any
w,w′ ∈ G, the following diagram of isomorphisms commutes:

Pos(opw opw′ B) opw(Pos(opw′ B)) opw opw′ Pos(B)

Pos(opww′ B) opww′ Pos(B)

op
op

w′ B

w
opw(opB

w′ )

opB
ww′

Proof. This lemma is an easy induction on B, using naturality of the isomor-
phisms in Lemmas 13 and 14, and of the commuting diagrams there.

Lemma 16. For every w ∈ G, k ∈ N and Batanin tree B,

opw ∂k = ∂k opw .

Moreover, the following equations hold

k + 1 ∈ w k + 1 /∈ w

opw(t
B
k ) ◦ op

∂kB
w =opBw ◦ s

opw B

k opw(s
B
k ) ◦ op

∂kB
w =opBw ◦ s

opw B

k

opw(s
B
k ) ◦ op

∂kB
w =opBw ◦ t

opw B

k opw(t
B
k ) ◦ op

∂kB
w =opBw ◦ t

opw B

k

Proof. We proceed by induction on k. For k = 0 both opw ∂kB and ∂k opw B are
equal to the disk D0, and the equations state that opBw preserves the basepoints.
Suppose therefore that the result is true for some k ∈ N to prove that it also
holds for k + 1. Letting B = br[B1, . . . , Bn], we see that

opw ∂k+1B = opw(br[∂kB1, . . . , ∂kBn])

= br(swapw(1)[opw−1 ∂kB1, . . . , opw−1 ∂kBn])

= br(swapw(1)[∂k opw−1B1, . . . , ∂k opw−1Bn])

= ∂k+1 br(swapw(1)[opw−1B1, . . . , opw−1Bn])

= ∂k+1 opw B

by the inductive hypothesis.
We will prove the first equation in the case that k + 1 ∈ w and 1 ∈ w. The

other equation and the rest of the cases follow by the same argument. By the
inductive hypothesis, we may assume that for 1 ≤ i ≤ n, the following square
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commutes

Pos(opw−1Bi) opw−1(Pos(Bi))

Pos(∂k−1 opw−1Bi)

Pos(opw−1 ∂k−1Bi) opw−1 Pos(∂k−1Bi)

s
opw−1 Bi
k−1

op
Bi
w−1

op
∂k−1Bi
w−1

opw−1(t
Bi
k−1)

Applying the suspension functor and then the wedge sum from n to 1, we get that
the left square below commutes. Naturality of the isomorphisms in Lemmas 13
and 14 then imply that the right square below also commutes.

∨

ΣPos(opw−1Bi)
∨

Σopw−1 Pos(Bi) opw
∨

ΣPos(Bi)

∨

ΣPos(∂k−1 opw−1Bi)

∨

ΣPos(opw−1 ∂k−1Bi)
∨

Σopw−1 Pos(∂k−1Bi) opw
∨

ΣPos(∂k−1Bi)

∨
Σ s

opw−1 Bi
k−1

∨
Σopw−1(t

Bi
k−1) opw

∨
Σ t

Bi
k−1

The outer part of the diagram though is precisely the square:

Pos(opw B) opw(Pos(B))

Pos(∂k opw B)

Pos(opw ∂kB) opw Pos(∂kB)

s
opw B

k

opB
w

op
∂kB
w

opw(tBk )

whose commutativity amounts to the first equation.

Remark 17. Batanin trees famillially represent the free strict ω-category monad
T str on the category of globular sets, in the sense that

(T strX)n =
∐

dimB≤n

Glob(Pos(B), X)

as shown by Leinster [20]. Compatibility of the opposites with Batanin trees
allows us to define an invertible morphism of monads opstrw : T str opw ⇒ opw T

str

by the formula

opstrw,X(B, f : Pos(B) → opwX) = (opw B, opw f ◦ opBw)

hence providing an alternative definition of the opposites of a strict ω-category.
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Example 18. The disk trees Dn defined in Example 4 are invariant under the
action of opposites. In other words for every w ∈ G, we have opwDn = Dn.
However, in general, the isomorphism opDn

w is not the identity. The family of
trees Bn,k,m of Example 5 satisfies the following equality with respect to the
opposites:

opw(Bn,k,m) =

{

Bm,k,n if k + 1 ∈ w

Bn,k,m otherwise.

Example 19. As a richer example, consider the tree B = br[br[br[br[]], br[]], br[]].
We illustrate the various opposites of this tree on the corresponding globular
pasting diagram with the following figure:

• • •
⇓⇛⇓
⇓

• • •
⇓

⇓⇛⇓

• • •
⇓⇛⇓
⇓

• • •
⇓

⇓⇛⇓

op2

op1

op1,2

op1

op2

5.2 The opposite of a computad

The opposite of a computad is defined similarly to the opposite of a globular set
by swapping the source and target of its generators. To define this action, we fix
an element w ∈ G, that will be omitted from the notation, and define recursively
on the dimension n ∈ N, an endofunctor and two natural transformation

op: Compn → Compn

opCell : Celln ⇒ Celln op

opSph : Sphn ⇒ Sphn op

satisfying the following properties:

(op1) forming opposites commutes with the forgetful functors, and the inclusion
of globular sets into computads

Compn+1 Compn+1

Compn Compn

op

un+1 un+1

op

Glob Glob

Compn Compn

Freen

op

op

Freen
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(op2) the natural transformations are compatible with the boundary natural
transformation

Celln+1 Celln+1 op

Sphn un+1 Sphn opun+1 Sphn un+1 op

bdryn+1

opSph un+1

opCell

bdryn+1 op

(op3) the natural transformation opSph swaps the two cells of a sphere when
n + 1 ∈ w and leaves them unchanged otherwise, in the sense that the
following diagrams commute for i = 1, 2

Sphn Sphn op

Celln Celln op

pri

opCell

opSph

pri opn+16∈w

Sphn Sphn op

Celln Celln op

pri

opCell

opSph

pr2−i opn+1∈w

(op4) the natural transformation opCell preserves generators, in that for every
globular set X and x ∈ Xn, we have that

opCell
FreeX(var x) = varx.

(op5) the natural transformation opSph preserves fullness, in that for every full
n-sphere A of Free Pos(B), the n-sphere

A′ = Sphn Freen(op
B)−1(opSph(A))

of FreePos(opB) is also full.

As a base case, we define op and opSph to be the identities of Comp−1 and
Sph−1 respectively. Let therefore n ∈ N and suppose inductively that data as
above has been defined for all natural numbers less than n, satisfying the given
properties.

Computads. First we will define the action of op on all n-computads. Let
C = (Cn−1, V

C
n , φCn ) be an n-computad. The opposite computad opC consists

of the opposite computad opCn−1, the same set of generators V C
n , and the

attaching function

φopC
n : V C

n

φC
n−−→ Sphn−1 Cn−1

opSph

−−−→ Sphn−1(opCn−1).

By Properties (op3) and (op4), we can easily deduce that op commutes with the
inclusion Freen on objects, while it clearly commutes with the forgetful functors
un by definition.

29



Cells and morphisms. Wewill then define op on morphisms σ of n-computads
of target C, together with the component of the natural transformation opCell

at C mutually recursively. For a generator v ∈ V C
n , we let

opCell(var v) = var v,

and we observe that

bdryn op
Cell(var v) = opSph bdryn(var v).

Given a coherence cell c = coh(B,A, τ) of C, we may assume that recursively
that op(τ) has been defined, and let

A′ = Sphn−1 Freen−1(op
B)−1(opSph(A))

opCell(c) = coh(opB,A′, op(τ) ◦ Freen(op
B))

We then observe again that the boundary of this cell is given by

bdryn op
Cell(c) = Sphn−1(op τn−1)(op

SphA)

= opSph(Sphn−1(τn−1)(A))

= opSph bdryn(c).

Finally, for a morphism σ = (σn−1, σV ) : D → C, we define assume that opCell

has been defined on cells of the form σV (v) for v ∈ V D
n and define

op(σ) = (opσn−1, op
Cell ◦ σV ) : opD → opC

This is a well-defined morphism of computads by the observation on the bound-
ary of the cells opCell(c), i.e. by Properties (op2).

It follows immediately from the definition that op commutes with the for-
getful functor un on morphisms as well. Using that opCell preserves generators,
we can also deduce that op commutes with the inclusion Freen on morphisms
as well. Therefore, we have shown Properties (op1), (op2) and (op4) so far.

Naturality. We will now show that op is a functor and that opCell is natu-
ral. For that, we fix a morphism of n-computads σ : C → D, and we proceed
recursively to show that the following square commutes

Celln C CellnD

Celln opC Celln opD

Celln σ

opCell opCell

Celln op σ

and that for all morphism τ : E → C,

opσ ◦ op τ = op(σ ◦ τ).
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By definition of opσ, the square above commutes when restricted to generators.
Moreover, for a coherence cell c = coh(B,A, τ), we see that

opCell ◦Celln(σ)(c) = opCell(coh(B,A, σ ◦ τ))

= coh(B,A′, op(σ ◦ τ) ◦ Free(opB))

= coh(B,A′, op(σ) ◦ op(τ) ◦ Free(opB))

= Celln(opσ)(coh(B,A
′, op(τ) ◦ Free(opB)))

= Celln(opσ) ◦ op
Cell(coh(B,A, τ))

where A′ is defined as above. Given arbitrary τ : E → C, we may assume that
the square commutes when restricted to the image of τV . By the inductive hy-
pothesis, op preserves composition of morphisms of (n−1)-computads. Hence it
suffices to show the equality above for the generators of E. We recall the defini-
tion of the composition of morphisms of n-computads given in [11, Section 3.1]:

(σn−1, σv) ◦ (τn−1, τV ) = (σn−1 ◦ τn−1,Celln(σ) ◦ τv)

Using this definition, we have:

(op(σ ◦ τ))V = opCell ◦Celln(σ) ◦ τV

= Celln(opσ) ◦ op
Cell
n ◦τV

= (op(σ) ◦ op(τ))V .

Therefore, op is a functor and opCell is natural.

Spheres. The natural transformation opSph is completely determined by Prop-
erty (op3). Indeed, for an n-computad C and for a sphere (a, b) ∈ Sphn C, we
are forced to define

opSph(a, b) =

{

(opCell b, opCell a), if n+ 1 ∈ w

(opCell a, opCell b), if n+ 1 6∈ w

Property (op2) shows us that those opCell a and opCell b have the same source
and target, so that this assignment is well-defined. It is clearly natural by
naturality of opCell.

Fullness. To finish the recursive definition, it remains to show that for every
Batanin tree B and every n-sphere A = (a, b) of Freen Pos(B), the n-sphere

A′ = Sphn Freen(op
B)−1(opSph(A))

of Freen Pos(opB) is also full. We will show that in the case that n + 1 ∈ w,
the other case being similar. By assumption, we may write

a = Celln Freen(s
B
n )(a0) b = Celln Freen(t

B
n )(b0).

31



For n-cells a0, b0 of Freen Pos(∂nB) whose support contains all positions of ∂nB.
Then we have that A′ = (a′, b′) where

a′ = Celln Freen((op
B)−1 ◦ tBn )(op

Cell b0)

b′ = Celln Freen((op
B)−1 ◦ tBn )(op

Cell a0)

By Lemma 16, we can rewrite those cells as

a′ = Celln Freen(s
opB
n )(Celln Freen(op

∂nB)−1(opCell b0))

b′ = Celln Freen(t
opB
n )(Celln Freen(op

∂nB)−1(opCell a0)).

Using the definition of the support and that opCell preserves generators, we may
show recursively that

supp(opCell(c)) = supp(c)

for every cell c. Moreover, isomorphisms of computads induce bijections on the
support of cells, so the support of the cells

Celln Freen(op
∂nB)−1(opCell b0)

Celln Freen(op
∂nB)−1(opCell a0)

must contain all positions of ∂n opB. Therefore, A′ is full.

Lemma 20. For every n ∈ N, the endofunctor op∅ on n-computads is the

identity, and so are the natural transformations opCell
∅ and opSph∅ . Moreover,

for any pair of elements w,w′ ∈ G,

opw opw′ = opww′

and the following diagrams commute.

Celln Celln opw′ Celln opw opw′

Celln Celln opww′

opCell
ww′

opCell
w′ opCell

w opw′

Sphn Sphn opw′ Sphn opw opw′

Sphn Sphn opww′

opSph

ww′

opSph

w′ opSph
w opw′

In particular, opw, op
Cell
w and opSphw are invertible with inverses opw, op

Cell
w opw

and opSphw opw respectively.

Proof. We proceed inductively on n ∈ N, since the result holds trivially for
n = −1. Since op∅ and opSph

∅
are identities for (n− 1)-computads, we see that

op∅ C = C
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for every n-comptutad C. Using Lemma 16, we can then show mutually recur-
sively for an n-computad C that

op∅ σ = σ opCell
∅ c = c

for every morphism σ : D → C and every n-cell c of C. Using then that opSph∅

is defined using opCell
∅ , we see that opSph∅ must be the identity as well.

Let now w,w′ ∈ G and C = (Cn−1, V
C
n , φ

C
n ) an n-computad. Then the

n-computad opw opw′ C consists of the (n− 1)-computad

opw opw′ Cn−1 = opww′ Cn−1,

the same set of generators, and the attaching function

φopw opw′ C
n = opSphw,opw′ C

◦ opSphw′,C ◦ φCn = opSphww′,C ◦ φCn = φopww′ C
n .

Hence, opw opw′ and opww′ agree on n-computads. Fixing a computad C, we
can show that they also agree on morphisms with target C mutually inductively
to recursively to showing that the claimed diagram for opCell

w commutes. The
commutative diagram from opSphw then follows from the one for opCell

w .

Having defined the opposite of an n-computad for every n ∈ N, in a way that
is compatible with the forgetful functors un, we get for every w ∈ G, a functor

op: Comp → Comp

sending a computad C = (Cn)n∈N to the computad

opC = (opCn)n∈N

and acts similarly on morphisms. Property (op1) shows that op is compatible
with the inclusion functors Free in that

Comp Comp

Glob Glob

op

op

FreeFree

commutes. Moreover, combining Properties (op2) and (op3), we see that the
natural transformations opCell give rise to a natural transformation

opCell : opCell ⇒ Cell op .

The following lemma is an easy consequence of Lemma 20.

Lemma 21. The functor op∅ : Comp → Comp is the identity functor, and the
natural transformations opCell

∅ is the identity of Cell. Moreover, for any pair
w,w′ ∈ G,

opw opw′ = opww′
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and the following diagrams commute.

opw opw′ Cell opw Cell opw′ Cell opw opw′

opww′ Cell Cell opww′ .
opCell

ww′

opw opCell
w′ opCell

w opw′

In particular, each opw is invertible with inverse itself, and opCell
w is invertible

with inverse opw opCell
w opw.

Example 22. The family of cells compn,k,m ∈ T Pos(Bn,k,m) defined in Sec-
tion 3.1 satisfies the following identities under the action of composites:

opCell
w (compn,k,m) =

{

compm,k,n if k + 1 ∈ w

compn,k,m otherwise.

We defined compn,k,m with m > n by analogy, informally relying on the reader’s
ability to consrtuct it from the case where n < m. The construction of opposites
give us a way to make this argument formal.

5.3 The opposite of an ω-category.

So far, we have defined the opposite of a globular set, a pasting diagram and a
computad. To extend those definitions and define the opposite of an ω-category,
we consider the mate

opT : T opw ⇒ opT

opT = (opCell Free)−1

of the natural transformation opCell Free under the adjunction op ⊣ op. We will
show that the functor op : Glob → Glob together with the natural transforma-
tion opT is a morphism of monads from T to T . This amounts to commutativity
of the following two diagrams

T op opT

op
η op op η

opT

TT op T opT opTT

T op opT
opT

µ op opµ

T opT opT T

The left one is the assertion that opCell preserves generators, which we have al-
ready shown. The right one is obtained from the following diagram by whisker-
ing on the right with Free, and then replacing opCell Free with its inverse.

opT Cell Cell opFreeCell T opCell T Cell op

opCell Cell op

opCell FreeCell
T opCell

Cell ε opopCell ε

opCell

Cell op ε
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The left square commutes by naturality of opCell, while the one on the right is
obtained from the following square by whiskering with Cell on he left.

opFreeCell op

Free opCell FreeCell op

op ε

Free opCell

ε op

Finally we can check that this square commutes by showing that two sides agree
on every generator.

Definition 23. The opposite of an ω-category (X,α : TX → X) with respect
to some w ∈ G is the ω-category consisting of the globular set opwX and the
structure morphism

T opwX
opT

w,X

−−−−→ opw TX
opw α
−−−−→ opwX

The construction of the opposite of an ω-category is well-defined and gives rise
to endofunctors

opw : ωCat → ωCat

for every w ∈ G as shown by Street [24], and explained by Leinster [20, The-
orem 6.1.1]. Moreover, the following lemma - an immediate consequence of
Lemma 21 - shows that those endofunctors are invertible and give rise to an
action

op : G→ Aut(ωCat)

of G on the category of ω-categories.

Lemma 24. The natural transformation opT∅ is the identity, and for any w,w′ ∈ G
the following diagram commutes:

T opw opw′ opw T opw′ opw opw′ T

T opww′ opww′ T

opT
w opw′ opw opT

w′

opT
ww′

The commutative diagram showing that opTw is a morphism of monads im-
plies in particular that the components of the natural transformation opCell

w are
morphisms of free ω-categories, so it can also be seen as a natural isomorphism

opKw : opwK
T ⇒ KT opw

The opposite functors on globular sets, computads and ω-categories are therefore
related by the following five squares

ωCat ωCat ωCat ωCat Comp Comp

Glob Glob Comp Comp Glob Glob

UT UT

opw

opw

KT KT

opw

opw

opK
w

FreeFree

opw

opw
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Comp Comp ωCat ωCat

Glob Glob Glob Glob
opw

opw

Cell Cell
opCell

w

opw

opw

FT FT
opF

w

where

opFw = opKw Free opCell
w = UT opKw .

In particular, the opposite of an ω-category that is free on a globular set or
computad is again free on the opposite of the underlying globular set or the
opposite computad, up to natural isomorphism.

Example 25. In the light of the action of opposites on ω-categories, specialising
Example 22 to the cell comp1,0,2 can be interpreted as stating that the left
whiskering of a cell y by a cell x in an ω-category X can be described as the
right whiskering of y by x in the opposite ω-category op1(X).

Remark 26. Since the free ω-category monad T is isomorphic to Leinster’s ini-
tial contractible globular operad, it is equipped with a natural transformation
α : T ⇒ T str to the free strict ω-category monad admitting a contraction. An
alternative way to construct the morphism of monads opT : T op ⇒ opT , would
be to show that the composite

opT op
opα op
=====⇒ opT str op

op opstr

=====⇒ T str

is also a contractible operad. From this approach, it would have been harder
to compute an explicit formula for opT , which is needed for example to extend
the proof assistant catt with a meta-operation computing the opposites, and it
would not be immediately obvious that the property of being free on a computad
is preserved by the formation of inverses.

5.4 Opposites of hom ω-categories

We will show that the operations of forming hom ω-categories and opposite
categories commute. To make this statement precise, we first extend the action
of G = Z

N>0

2 on ωCat to an action on bipointed ω-categories

op : G→ Aut(ωCat⋆⋆)

by letting for w ∈ G the opposite of a bipointed ω-category (X, x,x+) be the
ω-category opwX with the same basepoints when 1 6∈ w, and with the base-
points swapped when 1 ∈ w.

Lemma 27. For every w ∈ G, there exists a natural isomorphism

opΣw : Σ opw−1 ⇒ opw Σ : Comp → Comp⋆⋆

compatible with the natural isomorphism of Lemma 13 in the sense that

opΣw Free = Free opΣw
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and the following diagram commutes:

Σopw−1Cell opw ΣCell

ΣCell opw−1 opw Cell Σ

Cell Σ opw−1 Cell opw Σ

opΣ
w Cell

Σ opCell
w−1

ΣCell opw−1

opw ΣCell

opCell
w Σ

Cell opΣ
w

Proof. We will build natural isomorphism

opΣw : Σ opw−1 ⇒ opw Σ : Compn → Compn+1

inductively on n ≥ −1 commuting with the forgetful functors un, the inclusion
functors Freen and making the following pentagons commute

Celln

Celln opw−1 Celln+1 Σ

Celln+1 Σopw−1 Celln+1 opw Σ
Celln+1 opΣ

w

ΣCell

opCell
w Σ

opCell
w−1

ΣCell opw−1

Sphn

Sphn opw−1 Sphn+1 Σ

Sphn+1 Σopw−1 Sphn+1 opw Σ
Sphn+1 opΣ

w

ΣSph

opSph
w Σ

opSph
w−1

ΣSph opw−1

For the unique (−1)-computad, we let

opΣw : {v−, v+} → {v−, v+}

be the identity function when 1 6∈ w, and the function swapping the two gener-
ators when 1 ∈ w. This is a natural isomorphism making the second pentagon
commute: both sides send the unique (−1)-sphere to the 0-sphere (v−, v+) when
1 6∈ w, and to the 0-sphere (v+, v−) otherwise.

For an n-computad C = (Cn−1, V
C
n , φCn ) where n ∈ N, we let

opΣw,C = (opΣw,Cn−1
, var) : Σ opw−1 C → opw ΣC

This is a well-defined morphism of computads by the commutativity of the
second pentagon one dimension lower. Moreover, it commutes with the forgetful
and the free functors by construction.
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We will show that the first pentagon commutes for a computad C and that
opΣw is natural mutually inductively. First we see that the pentagon commutes
when restricted to generators, since both opCell

w and ΣCell preserve generators.
Suppose now that n > 0 and let c = coh(B,A, τ) a coherence n-cell of C. Then
we see that

(opCell
w,ΣC ◦ΣCell

C )(c)

= coh(opw ΣB,A1, opw Σ τ ◦ Freen op
ΣB
w )

(Celln+1(op
Σ
w,C)◦Σ

Sph
opw−1 C ◦ opSphw−1,C)(c)

= coh(Σ opw−1B,A2, op
Σ
w,C ◦Σopw−1 τ ◦ ΣFreen op

B
w−1)

where

A1 = Sphn Freen(op
ΣB
w )−1(opSphw ΣSphA)

A2 = ΣSph
opw−1 C(Sphn−1 Freen−1(op

B
w−1)

−1(opSphw−1A))

By definition of the suspension and the opposite of a tree, we have that

opw ΣB = Σopw−1B,

so the trees over which those coherence cells are built agree. Moreover, the
natural isomorphism opΣB

w is defined to be the composite

opΣB
w = opΣw,Pos(B) ◦ΣopBw−1 .

Using that fact and the naturality of ΣSph, we can rewrite the spheres A1 and
A2 respectively as

A1 = Sphn Freen Σ(op
B
w−1)

−1(Sphn Freen(op
Σ
w,Pos(B))

−1(opSphw ΣSphA))

A2 = Sphn ΣFreen−1(op
B
w−1)

−1(ΣSph
opw−1 C opSphw−1A)

and observe that they agree by commutativity of the diagram for spheres one
dimension lower, and commutativity of the suspension with the functor Freen.
Moreover, we may assume that the naturality square for τ commutes by the
inductive hypothesis, which shows that the morphisms defining the coherence
cells agree. Therefore, the first pentagon commutes on coherence cells as well.

Let now σ : D → C be a morphism of n-computads and suppose that the
pentagon commutes when restricted to cells of the form σn,V (v) for v ∈ V D

n . To
show that the naturality square for σ commutes, i.e. that

opΣw,C ◦Σopw−1 σ = opw Σσ ◦ opΣw,D,

we may assume by induction on the dimension and commutativity with the
forgetful functors that the underlying morphisms of n-computads agree. It
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remains to show that the two morphisms agree on top-dimensional generators.

Let therefore v ∈ V
Σopw−1 D

n+1 = V D
n be a generator. Then

(opΣw,C ◦Σopw−1 σ)V (v) = Celln+1(op
Σ
w,C)(Σ

Cell
opw−1 C opCell

w−1,C(σV (v)))

= opCell
w,ΣC ΣCell

C (σV (v))

= (opw Σσ)V (v)

= Celln+1(opw Σσ)(var v)

= Celln+1(opw Σσ)((opΣ
w,D)V v)

= (opw Σσ ◦ opΣw,D)V (v)

so the two morphisms agree on generators as well. Hence, the naturality square
commutes.

This concludes the induction on n ∈ N. By commutativity with the forgetful
functors, the natural isomorphisms opΣw for every n ∈ N combine to a natural
isomorphism

opΣw : Σ opw−1 ⇒ opw Σ : Comp → Comp

as well. Commutativity of the first pentagon shows that the diagram of the
lemma commutes, since opΣw Cell is the identity on positive-dimensional cells.

Proposition 28. For every w ∈ G, the following diagram commutes

ωCat⋆⋆ ωCat⋆⋆

ωCat ωCat

ΩΩ

opw

opw−1

Proof. In order to prove commutativity of this diagram for some w ∈ G, it is
useful to prove commutativity of the analogous diagram on the level of globular
sets first:

Glob⋆⋆ Glob⋆⋆

Glob Glob

ΩΩ

opw

opw−1

The mate of the natural isomorphism of Lemma 13 is a natural transformation
fitting in this square defined as the whiskered composite

opw−1Ω = ΩΣopw−1 Ω
ΩopΣ

w Ω
=====⇒ Ωopw ΣΩ

Ωopw κ
=====⇒ Ωopw

for κ the counit of the adjunction Σ ⊣ Ω. One of the snake equations of this
adjunction states that Ωκ is an identity. Combining that with the fact that opw
preserves cells and acts trivially on morphisms, we see that Ω opw κ must also
be an identity. Moreover, the natural isomorphism opΣw was defined to be the
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identity on positive-dimensional cells, so ΩopΣw must also be an identity. Since
the mate of opΣw is an identity natural transformation, we conclude that the
square above must commute.

Since the diagram commutes on the level of globular sets, and the forgetful
functors UT and UT⋆⋆

are faithful, it follows that the diagram commutes on
the level of ω-categories if it commutes for objects, meaning that for every
bipointed ω-category X , the ω-categories Ω opwX and opw−1ΩX are equal.
Both ω-categories have the same underlying globular set by commutativity of the
square on the level of globular sets, so it remains to show that they have the same
structure morphisms. Unwrapping the definitions of opw and Ω, this amounts
to the commutativity of the following diagram of natural transformations

T opw−1 Ω opw−1 T Ω opw−1ΩT
⋆⋆

T Ωopw ΩT ⋆⋆ opw Ωopw T
⋆⋆

opT
w−1 Ω opw−1 ΩT

ΩT opw ΩopT⋆⋆

w

where opT
⋆⋆

w is simply opTw seen as a natural isomorphism between bipointed
globular sets. By naturality of the mate correspondence, commutativity of this
diagram is equivalent to that of the following one:

ΣT opw−1 Σopw−1 T opw ΣT

T ⋆⋆Σopw−1 T ⋆⋆ opw Σ opw T
⋆⋆Σ

ΣopT
w−1 opΣ

w T

opw ΣTΣT opw−1

T⋆⋆ opΣ
w opT⋆⋆

w Σ

Replacing each opTw by each inverse and rotating the diagram, we are left to
show that the following diagram commutes:

Σ opw−1 T ΣT opw−1 T ⋆⋆Σopw−1

opw ΣT opw T
⋆⋆Σ T ⋆⋆ opw Σ

ΣopCell
w−1 Free ΣCell Free opw−1

T⋆⋆ opΣ
wopΣ

w T

opw ΣCell Free opCell⋆⋆

w Free⋆⋆ Σ

But this is precisely the diagram of Lemma 27 whiskered on the right with Free,
hence it commutes.

6 Applications to Eckmann-Hilton cells

Throughout this article, we have illustrated the construction of suspensions and
opposites on the various binary composition operations that have introduced
in Section 3.1. We will illustrate further our constructions in action on a more
complex construction, that of the Eckmann-Hilton cells.
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6.1 A clockwise Eckmann-Hilton cell

The Eckmann-Hilton arguments states that given two monoid structures on
a set satisfying some compatibility relation, the two structures are necessarily
equal and commutative. This arguments can be translated to weak ω-categories,
where it states that considering two cells c and c′ whose boundary are both iden-
tities over the same cell, there exists a higher cell witnessing the commutativity
of their vertical composite. This cell comes from the compatibility of the com-
positions ∗1 and ∗0 on 1-cells of the ω-category.

We sketch here the definition of such a higher cell, that we call the clock-
wise Eckmann-Hilton argument. For this, we consider the computad Ceh which
has one 0-dimensional generator x and two 2-dimensional generators a, b whose
sources and targets are all the identity cell idx on x. We will define a 3-cell eh
in Ceh whose source is a∗1 b and whose target it b∗1 a. Given a weak ω-category
X, a pair of 2-cells c, c′ in X whose sources and targets are identities on the same
0-cell correspond exactly to a morphism of ω-categories f : KTCeh → X. The
clockwise Eckmann-Hilton cell on c and c′ in X is then defined to be:

eh(c, c′) := f(eh).

The source of this cell is c ∗1 c
′ and its target is c′ ∗1 c.

The 3-cell eh can be geometrically illustrated as the following composite

x x x
⇓b

⇓

⇓

⇓a
⇛ x x x⇓b

⇓

⇓

⇓a ⇛ x x x
⇓b

⇓

⇓
⇓a

⇛ ⇛

x x
⇓a

⇓b

x x
⇓b

⇓a

where the unlabelled 1-cells are the identity on x and the unlabelled 2-cells are
unitors. The 3-cells appearing in the diagrams are composites of unitors, associ-
ators and interchangers. The precise definition of this cell is quite cumbersome
and beyond the scope of our paper. It has been formalised in the proof assistant
catt [12] for working in finite computads [8]. We note that the Eckmann-Hilton
cell is not unique, since we can get cells of the same type by iteratively rotating
the cells a and b around each other.

6.2 Opposites of the Eckmann-Hilton cell

We now discuss the action of the opposite operation on the clockwise Eckmann-
Hilton cell. The first thing that one can notice is that the computad Ceh is
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self-dual, in that opw Ceh = Ceh for every w ∈ G. Moreover, we have the
following equations for the composites of a and b:

opCell
1 (a ∗0 b) = b ∗0 a opCell

1 (a ∗1 b) = a ∗1 b

opCell
2 (a ∗0 b) = a ∗0 b opCell

2 (a ∗1 b) = b ∗1 a.

It follows that the opposites opCell
1 (eh) and opCell

2 (eh) are again Eckmann-Hilton
cells, obtained by rotating a and b around each other anticlockwise. They further
satisfy the following equality

opCell
1 (eh(a, b)) = opCell

2 (eh(b, a)),

which we have formally verified with the proof assistant catt. Given an ω-category
X and two cells c, c′ of X whose sources and targets are identities on the same
0-cell, the anticlockwise Eckmann-Hilton cell on c and c′ in X can be obtained
either as the clockwise Eckmann-Hilton cell on c and c′ in the opposite cate-
gory op1 X, or as the clockwise Eckmann-Hilton cell on c′ and c in the opposite
category op2 X.

Remark 29. It turns out that the opposite of the Eckmann-Hilton cell op1(eh)
is also its inverse, as explained in our subsequent work [7].

6.3 Suspensions of the Eckmann-Hilton cell

Finally, we discuss the construction of the suspension applied to the Eckmann-
Hilton cell. The computad Σn Ceh can be described explicitly, and it is immedi-
ate to see that a morphism of ω-categories KT Σn Ceh → X exactly corresponds
to a pair of (n+2)-cells c and c′ in X, whose sources and targets are all identities
over the same n-cell. In this situation, we define the clockwise Eckmann-Hilton
cell on c and c′ to be

ehn(c, c
′) := f((ΣCell)n(eh)).

This cell witnesses the equivalence between c ∗n+1 c
′ and c′ ∗n+1 c, and comes

from the interchanger between the (n + 1)-composition and the n-composition
of (n+ 2)-cells. This witness cell is obtained as the clockwise Eckmann-Hilton
cell on c and c′ in the iterated hom ω-category on X.
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