
ar
X

iv
:2

41
2.

01
66

7v
1

 [
cs

.L
O

]
 2

 D
ec

 2
02

4

Generating Higher Identity Proofs in Homotopy

Type Theory

Thibaut Benjamin

December 3, 2024

Abstract

Finster and Mimram have defined a dependent type theory called

CaTT, which describes the structure of ωcategories. Types in homotopy

type theory with their higher identity types form weak ωgroupoids, so

they are in particular weak ωcategories. In this article, we show that this

principle makes homotopy type theory into a model of CaTT, by defin-

ing a translation principle that interprets an operation on the cell of an

ωcategory as an operation on higher identity types. We then illustrate

how this translation allows to leverage several mechanisation principles

that are available in CaTT, to reduce the proof effort required to derive

results about the structure of identity types, such as the existence of an

Eckmann-Hilton cell.

1 Introduction

Types in Martin-Löf type theory with intentional equality are weak ω-groupoids [22].
This is one of the foundational observation of homotopy type theory [24] (HoTT).
In this article, we work with a fragment of Martin-Löf type theory that we call
HoTT to emphasise that we care about higher identity types, even though we do
not use the univalence axiom or higher inductive types. Being weak ω-groupoids,
types in HoTT are in particular weak ω-categories, by forgetting the preferred
direction. On the other hand, Finster and Mimram [15] have introduced the
dependent type theory CaTT, which is the theory of weak ω-categories. CaTT

and HoTT are both dependent type theories, one is the theory of ω-categories
while in the other one, every type is an ω-category. This article establishes a
formal connection between the two theories.

Contributions. In this article, we define a translation scheme that allows
to transport CaTT terms onto HoTT terms, by viewing higher cells in CaTT as
higher identity proofs in HoTT. We then prove the correctness of this translation.
This means that the translation of a well-formed term in context in CaTT is a
well-formed term in HoTT, whose type we characterise as the translation of the
type of the original term in CaTT. The translation is defined by induction on

1

http://arxiv.org/abs/2412.01667v1

the syntax of CaTT, and the main difficulty is to translate each of the operation
making the ω-category structure into successive applications of the J rule in
HoTT. In the terminology of Boulier, Pedrot and Tabareau [9], we show that
HoTT is a syntactic model of CaTT. We also present an implementation of
this translation that generates terms in Coq and show how it can be used in
combination with mechanised reasoning available in CaTT to reduce the proof
effort required to generate certain complex terms in HoTT.

Related works. Weak ω-groupoids were first defined by Grothendieck [17]
with the intent of modelling spaces up to homotopy. The connection between
types and groupoids was first discovered by Hofmann and Streicher [18]. Lums-
daine [20], Van den Berg and Garner[25] and Altenkirch and Rypacek [1] then
promoted this to ω-groupoids, showing that types with their iterated identity
types are endowed with the structure of weak ω-groupoids. While mathemati-
cally weak ω-groupoids are described as a collection of cells in every dimension
that allow for partial composition operations satisfying associativity, unitality
and exchange laws up to higher cells, in Martin-Löf type theory, the entire struc-
ture simply emerges from the J rule. With a careful examination of how the J

rule yields a weak ω-groupoid structure, Brunerie [11] proposed a definition of
ω-groupoids formulated as a dependent type theory.

Weak ω-categories were first defined by Batanin [3]. The definition was then
elaborated upon by Leinster [19]. More recently, Maltsiniotis [21] proposed an
alternative definition, which is based on Grothendieck’s definition of groupoids
and modifies it by enforcing a privileged direction. This definition has been
proven equivalent to that of Batanin and Leinster by Ara [2] and Bourke [10].

The definition the theory CaTT by Finster and Mimram [15] was inspired by
both Brunerie’s formulation of weak ω-groupoids in dependent type theory, and
Maltsiniotis’ definition of weak ω-categories from weak ω-groupoids. Several
works have been conducted around this theory. It was generalised by Dean et
al. [14] to give an inductive definition of computads for weak ω-categories, it
was proven by Benjamin, Finster and Mimram [6] that the models of CaTT are
precisely Grothendieck-Maltsiniotis ω-categories, and several meta-operations
for CaTT have been proposed, such as the suspension and opposites [7], compu-
tation of inverses and invertibility witnesses [8], functorialisation [5], allowing
for mechanised reasoning in the proof-assistant CaTT.

Overview of the paper. In Section 2, we present the fragment of Martin-Löf
type theory that we work with, which we call HoTT in this article to emphasise
the fact that we are interested in the structure of higher identity types. Section 3
is dedicated to the presentation of the dependent type theory CaTT, which relies
on a simpler type theory called GSeTT. In Section 4, we present our algorithm
to translate terms in GSeTT into terms in HoTT, and we promote this into
a translation of terms in CaTT into terms in HoTT in Section 5. Both these
translation come with proofs of correctness. Finally, in Section 6, we discuss
the implementation aspects, and illustrate with the example of the Eckmann-

2

Hilton cell how leveraging the mechanisation available in CaTT allow for defining
complex terms in HoTT.

Acknowledgements. The author wants to thank Meven Lennon-Bertrand
for his helpful guidance on the internal of Coq, making the implementation of
the plugin possible, as well as Jamie Vicary, Ioannis Markakis, Chiara Sarti and
Wilfred Offord, for the interesting discussions around the work presented in this
paper.

2 Overview of Martin-Löf type theory

This section is dedicated to the presentation of the notation we use to work with
type theory, as well as the fragment of Martin-Löf type theory that we place
ourselves in and call HoTT.

2.1 Notations for type theories

We work with dependent type theories, made out of contexts, types, terms and
substitutions, as well as definitional equalities. Our theories are presented with
an untyped syntax with propositional judgements witnessing well-formedness.
We use the following notation for these judgements:



















Γ ⊢ ctx Γ is a valid context

Γ ⊢ A type A is a valid type in Γ

Γ ⊢ u : A u is a term of type A in Γ

∆ ⊢ γ :: Γ γ is a substitution from Γ to ∆

We call pre-contexts, pre-types, pre-terms and pre-substitutions the elements
of the untyped syntax, which are not necessarily well-formed, to contrast with
contexts, types terms and substitution which are implicitly assumed to be well-
formed. We denote u = v the syntactic equality between pre-terms u and v, and
u ≡ v the definitional equality between them. Syntactic equality compares the
expressions whereas definitional equality can be subject to equality rules. The
empty context is denoted ∅, and substitutions are written as 〈x 7→ u〉 where x

is a variable and u is the term the variable x is substituted for. In the rest of
this article, we introduce a three dependent type theories with which we work
and we assume that they enjoy all of the usual structure, making their syntax
into a category with families. This has already been shown for each of these,
and more details regarding this structure is given in Appendix A

2.2 Martin-Löf type theory

In this article, we consider a fragment of Martin-Löf type theory with universes a
la Tarski, identity types and Π-types. Since we are interested in the structure of
higher identity types, we call this theory homotopy type theory, or HoTT, even

3

though our work does not require the univalence principle or higher inductive
types. For the sake of clarity, we avoid the use of de Bruijn level and assume an
countably infinite set of variables, that we denote x,y, . . .We use the standard
notations for the Π-types as Π(x:A).B and λ-applications as λ(x:A).u.

Our construction does not involve size issues, so we may assume that we are
working with a universe of fixed size U . The type constructor El produces a
type out of a term of type U , as given by the following rule

Γ ⊢ A : U

Γ ⊢ El(A) type
(El-in)

Given a type A and terms u, v, we denote IdA(u, v) the identity type, and given
just A and u, we denote reflA,u the reflexivity term. The introductions rules for
identity types and reflexevity are the following:

Γ ⊢ u : A Γ ⊢ v : A

Γ ⊢ IdA(u, v) type
(Id-in)

Γ ⊢ u : A

Γ ⊢ reflA,u : IdA(u, u)
(refl-in)

We also use the Paulin-Mohring formulation of the J constructor for identity
types [23], whose introduction rule is given as follows:

Γ ⊢ A type Γ ⊢ u : A
Γ, x:A, y:A, e: IdA(x, y) ⊢ P (x, y, e) type Γ ⊢ p : P (u, u, reflA,u)

Γ ⊢ J(A,P, p) : Π(v:A)(e: IdA(u, v)).P (u, v, e)
(J-in)

The J rule is subject to a computation rule. For the sake of simplicity, we write
this as the following linear untyped defintional equality:

J(A, u, P, p) v reflB,w ≡ p. (ηJ)

Any application of (ηJ) in a context where both sides are well-typed must be
instantiated with u, v, w, as well as A,B being definitionally equal, and thus
coincide with the standard computation rule.

For any term u and any type A of HoTT we define the N-indexed family
of types IdnA(u) and the N-indexed family of terms reflnA,u by induction on n as
follows:

Id0A(u) := A refl0A,u := u

Idn+1
A (u) := IdIdn

A
(u)(refl

n
A,u, refl

n
A,u) refln+1

A,u := reflIdn
A,u

,refln
A,u

These define valid types and terms in the theory HoTT, in the following sense:

Lemma 1. For every n ∈ N, the following rules are admissible in HoTT:

Γ ⊢ u : A

Γ ⊢ IdnA(u) type

Γ ⊢ u : A

Γ ⊢ reflnA,u : IdnA,u

4

Proof. We prove this result by induction. The validity of the type Id0A(u) is a
standard inversion lemma, and the typing of the term refl0A,u is exactly given

by the premise of the rule. The validity of the type Idn+1
A (u) is obtained from

Rule (Id-in) and the typing of the term reflnA,u. The typing of the term refln+1
A,u

is obtained from Rule (refl-in) and the typing of the term reflnA,u.

Given a valid type Γ ⊢ A type in HoTT, we define its Π-lifting ΠΓ.A to
be the iterated Π-type with body A where all variables of Γ are successively
bound by a Π constructor. Similarly, given a valid term Γ ⊢ u : A, we define
its λ-lifting λΓ.u to be the iterated λ-term with body u where all variables of Γ
are successively bound by a λ-constructor.

Lemma 2. The following rules are admissible in HoTT:

Γ ⊢ A type

∅ ⊢ ΠΓ.A type

Γ ⊢ u : A

∅ ⊢ λΓ.u : ΠΓ.A

Proof. The proof is a straightforward induction on the length of the context Γ,
applying successively the introduction rules for Π-types and λ-terms.

3 The dependent type theory CaTT

In this section, we present the dependent types theories GSeTT and CaTT. These
are type-theoretic formulations of algebraic structures, namely globular sets and
weak ω-categories, using Cartmell’s point of view of dependent type theories as
generalised algebraic theories [12]. These type theories do not support any
of the usual constructions that one typically encounters with Martin-Löf type
theory, in particular they do not have universes, function types, Π-types or Σ-
types. The type theories GSeTT and CaTT have the same type constructors, but
GSeTT has no term constructor, so that the only terms in GSeTT are variables,
and CaTT is an extension of GSeTT with term constructors.

3.1 The type theory GSeTT

The type theories GSeTT and CaTT have two type constructors ∗ and u →A v

where A is a pre-type and u, v are pre-terms. The introduction rules state that
∗ is always a valid type, while u →A v is subject to the same conditions as
IdA(u, v). Formally the rules are the following:

Γ ⊢ ctx

Γ ⊢ ∗ type
(∗-in)

Γ ⊢ u : A Γ ⊢ v : A

Γ ⊢ u →A v type
(→-in)

We define by induction the dimension of a pre-type of GSeTT or CaTT as follows:

dim ∗ = −1 dimu →A v = dimA+ 1

By convention, the initialisation is at −1, to be consistent with notations used
in topology. The dependent type theory GSeTT is the theory with those two
type constructor, and no term constructors.

5

Intuition on the semantics. Contexts in the theory GSeTT can be under-
stood as a description of a structure called globular sets, which is a generalisation
of a graph, allowing 2-dimensional arrows between the arrows, 3-dimensional ar-
rows between the 2-dimensional ones, and so on. In globular sets, n-dimensional
arrows are called n-cells. A context in GSeTT describes a finite globular sets,
by interpreting variables of type ∗ as vertices, and variables of an arrow type as
arrows between the prescribed source and target. The following illustrates an a
few contexts and their corresponding globular sets, using a pictorial representa-
tion of those:

(

x: ∗,
f :x →∗ x

)





x: ∗, y: ∗, z: ∗,
f :x →∗ y, f ′:x →∗ y, g: z →∗ y,

α: f →x→∗y f ′





x

f

x y z

f

f ′

⇓α
g

A judgement Γ ⊢ x : A then corresponds to a choice of a particular cell in the
globular cell corresponding to Γ, together with its iterated sources and targets.
Adopting the presheaf view on globular sets, this is equivalent by the Yoneda
lemma to a morphism of globular sets from Dn to the globular set corresponding
to Γ, where Dn is the walking n-cell globular set, also called n-dimensional disk.
A more in-depth exploration of this facts can be found in the works that directly
deals with the semantics of CaTT [15, 6].

3.2 The type theory CaTT

The type theory CaTT extends GSeTT by adding term constructors. Intuitively
these term constructors correspond to adding the higher categories operations
to the globular sets described by the theory GSeTT.

Ps-contexts and their source and target. The term constructors of the
theory CaTT are parameterised by a class of contexts of GSeTT that we call ps-
contexts. Those contexts are recognised by a judgement denoted Γ ⊢ps, which is
itself dependent on an auxiliary judgement Γ ⊢ps x:A where x is a variable and
A a type in GSeTT. The derivation rules for these judgements are the following:

Γ ⊢ps x: ∗
(pss)

Γ ⊢ps x:A

Γ, y:A, f :x →A y ⊢ps f :x →a y
(pse)

Γ ⊢ps f :x →A y

Γ ⊢ps y:A
(psd)

Γ ⊢ps x: ∗

Γ ⊢ps

(ps)

Additionally, we also require that all variables bound by ps-contexts are different.
Intuitively, ps-contexts are the contexts of GSeTT that do not present holes, and
have a global directionality.

6

Lemma 3. Ps-contexts are valid GSeTT contexts. More precisely, the following

rules are admissible in GSeTT

Γ ⊢ps

Γ ⊢ ctx

Γ ⊢ps x:A

Γ ⊢ x : A

This result proven in [6] shows that ps-context correspond to a particular
class of globular sets. They can be recognised by the existence of a total order
on their cells [26, 15], and correspond to situations that can be contracted in a
directed sense. For instance the following contexts are ps-contexts (illustrated
here with their corresponding globular set):

(

x: ∗, y: ∗, f :x →∗ y,

z: ∗, g: y →∗ z

)

W :=





x: ∗, y: ∗, f :x→∗ y,

g:x →∗ y, a: f →x→∗y g,

z: ∗, h: y →∗ z





x y z
f g

x y z

f

g

⇓a
h

Given a ps-context Γ and an integer i, we define two sub-contexts ∂−

i Γ and ∂+
i Γ

called respectively the i-source and the i-target of Γ as follows:

∂−

i (x: ∗) := (x: ∗)

∂−

i (Γ, y:A, f :x →A y) :=

{

∂−

i Γ if dimA+ 1 ≥ i

(∂−

i Γ, y:A, f :x →A y) otherwise

∂+
i (x: ∗) := (x: ∗)

∂+
i (Γ, y:A, f :x →A y) :=











∂−

i Γ if dimA+ 1 > i

(tail(∂−

i Γ), y:A) if dimA+ 1 > i

(∂−

i Γ, y:A, f :x →A y) otherwise

where tail is the operator that removes the top first element of the list. This
definition illustrates an important principle when reasoning on ps-contexts, only
allow to start with a one-element list and add two elements at one time, per-
forming structural induction on a derivation that a context is a pasting scheme
amounts to reasoning by induction on the pasting scheme seen as an odd-sized
list. This is because there exists at most one derivation than a given context
is a ps-context [4]. We illustrate the sources and targets of the ps-context W

introduced above:

∂−

1 W ∂+
1 W ∂−

0 W ∂+
0 W

(

x: ∗, y: ∗, f :x →∗ y,

z: ∗, h: y →∗ z

) (

x: ∗, y: ∗, g:x →∗ y,

z: ∗, h: y →∗ z

)

(

x: ∗
) (

z: ∗
)

x y z

f

h
x y z

g

h
x z

7

For any i ≥ 2, the i-sources and i-targets of W are equal to W . This is a generic
fact: Given a ps-context Γ and i ≥ dimΓ, the i-sources and targets of Γ are
equal to Γ.

Term constructors. The theory CaTT has a family of term constructors
cohΓ,A, where Γ is a ps-context and A is a type. Not all pairs (Γ, A) of contexts
and types yield a valid term constructor, so we introduce a judgement ⊢ cohΓ,A
to signify when this is the case. We sometimes call the coherences the valid
term constructors ⊢ cohΓ,A, and the following derivation rule characterises these
coherences, for i ∈ {dimΓ− 1, dimΓ}:

Γ ⊢ps ∂−

i Γ ⊢ u : A ∂+
i Γ ⊢ v : A

⊢ cohΓ,u→Av

(coh-wd)

{

Var(u:A) = Var(∂−

i Γ)

Var(v:A) = Var(∂+
i Γ).

Here, Var(u:A) denotes the union of all variables used by the term u and the
type A, and VarΓ denotes all variables bound in context Γ. The term construc-
tors are subject to the following introduction rule:

⊢ cohΓ,A ∆ ⊢ γ :: Γ

∆ ⊢ cohΓ,A[γ] : A[γ]
(coh-in)

Remark 1. Some presentations of CaTT use two different term constructors
or two different introduction rules for coh, and sometimes Rule (coh-wd) and
Rule (coh-in) are combined into a single rule. It is straightforward that those
are equivalent, and the presentation we give here is better suited for the work
in this article.

3.3 Implementation and intuition on the semantics

We have implemented in OCaml a type checker for the theory CaTT, that we
also call CaTT1. This plays the role of a proof assistant specifically dedicated
to working with a mathematical structure called ω-categories [21]. In this proof
assistant the user may declare the coherence cohΓ,A with the following syntax

coh [name] [ps-context] : [type-expr]

and define the term Γ ⊢ u : A using one of the following syntax

let [name] [context] = [body]

let [name] [context] : [type-expr] = [body]

where [name] is a string representing a name given to the coherence of the term,
[context] and [ps-context] are description of the context Γ, type-expr is
the type expression representing A and body is the term expression representing

1https://www.github.com/thibautbenjamin/catt

8

https://www.github.com/thibautbenjamin/catt

t. For instance, consider the following ps-context (represented with the corre-
sponding diagram) and coherence (where the output type), representing the
composition of 1-cells

Γ2 :=

(

x: ∗, y: ∗, f :x →∗ y,

z: ∗, g: y →∗ z

)

comp := cohΓ2,x→∗z

This coherence can be declared with the name comp in the proof-assistant CaTT
using the following input:

coh comp (x y : *) (f : x -> y) (z : *) (g : y -> z) : x -> z

In the proof arguments, contexts are declared as list of parenthesised items, and
in the type u →A v, the type A is always left implicit and inferred from u

and v. Consider now the following context together with the term, representing
the way to compose three 1-cells together by first composing the first two then
composing the result with the last cell

Γ3 :=





x: ∗, y: ∗, f :x→∗ y,

z: ∗, g: y →∗ z

w: ∗, g: z →∗ w



 Γ3 ⊢ lcomp : x →∗ w

lcomp := comp





〈

x 7→ x, y 7→ z, f 7→ comp

[〈

x 7→ x, y 7→ y, f 7→ f,

z 7→ z, g 7→ g

〉]

,

z 7→ w, g 7→ h

〉





This term can be declared in the proof assistant CaTT with the following input:

let lcomp (x y z w : *) (f : x -> y) (g : y -> z) (h : z -> w)

= comp (comp f g) h

In this declaration, since the context need not be a ps-context, we grouped
together all variables of type ∗ for simplification. This also illustrates that
substitutions are written like applications, and that a lot of arguments are left
implicit. The proof assistant CaTT can automatically infer which arguments
should be implicit, matching the usual notational conventions where the domains
and codomains of functions are implicit. As hinted by these examples, terms
in CaTT correspond to operations on weak ω-categories. Coherences represent
primitive operations while terms are cells obtained by using those primitive
operations. Here we use the word operation in a liberal sense. Consider the
following coherence

coh assoc (x : *) (y : *) (f : x -> y)

(z : *) (g : x -> y)

(w : *) (h : y -> z)

: comp (comp f g) h -> comp f (comp g h)

This coherence define a cell known as the associator, which witnesses that
the composition is associative, but in a weak sense. That is, the two terms
comp (comp f g) h and comp f (comp g h) are not definitionally equal, but

9

GSeTT term in context closed λ-term
x: ∗ ⊢ x : ∗ λ(B:U)(x:B).x

x: ∗, f: x → x ⊢ f : x → x λ(B:U)(x:B)(f : IdB(x,x)).f
x: ∗, y: ∗, f: x → y ⊢ y : ∗ λ(B:U)(x:B)(y:B)(f : IdB(x,y)).y

Figure 1: Translation from GSeTT terms to HoTT

related by this higher cell, which happens to be invertible in some appropriate
sense [13, 16, 8].

A formal connection between the semantics of CaTT and the theory of weak
ω-categories has been established [6], showing that CaTT allows one to work
directly in the theory of weak ω-categories. Since types in HoTT are weak ω-
groupoids [20, 25, 1], they are in particular weak ω-categories. The next two
section are dedicated to expanding in the connection between HoTT and CaTT,
by showing that HoTT is a syntactic model of CaTT, that is, by defining a
translation from the syntax of HoTT to that of CaTT and showing that this
translation preserves the typing judgements.

4 Translation of GSeTT terms into HoTT

Before presenting the translation of CaTT terms into HoTT, we present that
of GSeTT terms into HoTT. Not only this presentation is useful as a buildup
towards the translation of CaTT terms in a simpler setting, it is also directly used
by that translation, as the coherence rule of CaTT terms depend on derivation
in GSeTT through ps-contexts. From now on, in order to simplify the notations,
we assume the following on variables:

• Variables names in GSeTT and in CaTT are the same

• Every variable name in CaTT or GSeTT is also a variable name in HoTT

• There are variable names in HoTT that are not valid names in CaTT.

These assumptions are possible: if we assume both sets of variables to be count-
ably infinite, there exists an non-bijective injection from variable names in CaTT

to variables names of HoTT. By convention we use the font x to denote a vari-
able in GSeTT or CaTT and the font x to denote a variable in HoTT, and we
use the name of the variable to keep track of the names.

We consider a term judgement Γ ⊢ x : A in GSeTT. Our translation interprets
the variable x as a closed term representing the projection of the interpretation
of the context Γ onto the variable x. The context Γ is understood as describing
the arguments of the function, over a generic type B, where variables of type ∗
represent arguments of type B and variables of type y → z represent equalities
between the corresponding variables. This translation is best understood by
considering a few simple examples. Figure 1 illustrates it on a few GSeTT

terms, displayed with their corresponding closed λ-terms. As illustrated by this

10

figure, when no term constructor is involved, all the functions resulting from the
translation are projections, they just return one of their arguments unchanged
and discard all the other arguments. Although this case does not produce
interesting functions, it lets us illustrates a few principles about the translation.
First, it shows how the type of objects ∗ is translated into a reference to a
universally quantified type B, so the functions resulting from the translations
must take B as their first argument. Secondly, it shows how a GSeTT context
can be understood as describing an sequence of arguments that are all of type
B or of an higher identity type above those.

To define the translation, we first fix a variable B in HoTT whose not is not
a valid name in GSeTT, and define translation functions J KB, which associate
to a context (resp. a type) of CaTT, a context (resp. a type) in HoTT. These
function are defined by induction as follows:

{

J∅KB := (B:U)

J(Γ.x:A)KB := (JΓKB.x: JAKB)

{

J∗KB := El(B)

Jx →A yKB := IdJAKB(x,y)

Lemma 4. Translating derivable contexts, types and variables in GSeTT yields

derivable contexts, types and variables in HoTT. More precisely, we have:

• For every derivable context judgement Γ ⊢ ctx in GSeTT, the judgement

JΓKB ⊢ ctx is derivable in HoTT.

• For any type judgement Γ ⊢ A type derivable in GSeTT, the judgement

JΓKB ⊢ JAKB type is derivable in HoTT.

• For any term judgement Γ ⊢ x : A derivable in GSeTT, the judgement

JΓKB ⊢ x : JAKB is derivable in HoTT

Proof. This can be proved by induction on the derivation tree of the judgement
in the theory GSeTT. See Appendix B for a complete proof.

Given a derivable type judgement Γ ⊢ A type in GSeTT, we define the closed
type JΓ ⊢ A typeK as the Π-lifting of the type judgement JΓKB ⊢ JAKB type in
HoTT. Similarly, for a derivable term judgement Γ ⊢ x : A in GSeTT, we define
the closed term JΓ ⊢ x : AK to be the λ-lifting of the derivable term judgement
JΓKB ⊢ x : JAKB in HoTT.

JΓ ⊢ A typeK := ΠJΓKB .JAKB JΓ ⊢ x : AK := λJΓKB .x

The choice of the variable B is irrelevant as any two choices lead to α-equivalent
terms, hence the variable disappears from the notation.

Proposition 5. Consider a judgement Γ ⊢ x : A derivable in CaTT where no

term constructor appears. Then the closed λ-term JΓ ⊢ x : AK is valid in HoTT.

More precisely, the following judgement is derivable in HoTT:

∅ ⊢ JΓ ⊢ x : AK : JΓ ⊢ A typeK.

Proof. This is a consequence of Lemmas 2 and 4

11

5 Translation of CaTT terms into HoTT

In this section, we extend our translation to a translation from CaTT term to
closed λ-term in HoTT. Intuitively, a CaTT term in a context is interpreted in
HoTT as a function taking arguments as described by the CaTT context, and
returning a value determined by the term. As in the previous section, we start
by defining functions that perform the translation in contexts, and then we take
the λ-lifting. From now on, we consider a variable B that is a variable in HoTT

which is not a name in CaTT. The translation functions J KB are now more
numerous and more complex. Not only do we consider translations of contexts
and types, but also of terms, substitutions and coherences. The translation
function on coherences sends a coherence of CaTT onto a closed term in HoTT.
These functions are all defined by mutual induction. The cases for the contexts,
types, terms and substitutions are straightforward by induction and given by
the following:

{

J∅KB := (B:U)

J(Γ.x:A)KB := (JΓKB.x: JAKB)

{

J∗KB := El(B)

Jt →A uKB := IdJAKB(JtKB, JuKB)
{

JxKB := x

JcohΓ,A[γ]KB := (JcohΓ,AKB) [JγKB]

{

J〈〉KB := 〈B 7→ B〉

J〈γ, x 7→ t〉KB := 〈JγKB,x 7→ JtKB〉.

The definition of JcohΓ,AKB is left in order to complete the mutual induction.
We define this case as JcohΓ,AKB := elimB(Γ, A,Γ, idJΓKB), where elim is the
auxiliary function defined mutually inductively, by induction on the derivation
of the ps-context:

{

elimB((x: ∗), A,Γ, γ) := refldimA+1
B,x

elimB((∆, y:C, f: x →C y), A,Γ, γ) := J(JCKB,x, P (x′,y′, f ′), p) y f

where P and p are respectively defined as follows

P (x′,y′, f ′) := JAKB[γ][〈idJ(∆,y:C,f:x→Cy)KB ,x 7→ x′,y 7→ y′, f 7→ f ′〉]

p := elimB(∆, A,Γ, γ ◦ 〈idJ∆KB ,y 7→ x, f 7→ reflJCKB,x〉).

Intuitively, in the expression elim(∆, A,Γ, γ), the context Γ is meant to represent
the ambiant ps-context we started from, ∆ is meant to represent a sub-context
of Γ obtained by successively peeling off variables from Γ, and γ a substitution
mapping variables of JΓKB to variables of J∆KB or reflexivity witnesses of such.

In this mutually inductive definition, all the inductive are strictly decreasing,
except in the case for elim where in the inductive the structural height of the
type argument A is constant, but the first argument is strictly decreasing. The
induction is thus well founded, and proceeds by structural induction on the
syntax, and upon hitting a term constructor cohΓ,A temporarily switches to an
induction on the length of Γ before resuming the structural induction. This
inductive scheme is also used for the proof of correctness of Proposition 8. Note

12

that in the inductive case defining elim, the type C is the type of a ps-context,
and thus a type in GSeTT, so the expression JCKB denotes the previously defined
translation on GSeTT and it not an inductive call.

Lemma 6. The proposed translation scheme respects substitution application

at the level of the pre-syntax. More precisely, the following results hold:

• For all pre-type A and all pre-substitution γ in CaTT, we have the following

equality of pre-types in HoTT: JA[γ]KB = JAKB [JγKB].

• For all pre-term t and all pre-substitution γ in CaTT, we have the following

equality of pre-terms in HoTT: Jt[γ]KB = JtKB [JγKB].

• For all pairs of pre-substitutions δ, γ in CaTT, we have the following equal-

ity of pre-substitutions in HoTT: Jδ ◦ γKB = JδKB ◦ JγKB.

Proof. One can check this property by structural induction on the pre-syntax
of CaTT, see Appendix C.

Lemma 7. For every term (x: ∗) ⊢ u : A in CaTT, we have JuKB ≡ refldimA+1
B,x .

Similarly, for every type (x: ∗) ⊢ A type in CaTT, we have JAKB ≡ IddimA+1
B,x

Proof. The result on term can be proven by induction together with a corre-
sponding for the auxiliary operation elim. The case of elim is itself an induction
on the length of the ps-context given by the first argument, and amounts to
successive applications of the computation rule (ηJ). The result on types is a
consequence of that of terms. See Appendix C for more details.

Proposition 8. The following results hold:

• For any context Γ ⊢ ctx in CaTT, we have JΓKB ⊢ ctx in HoTT.

• For any type Γ ⊢ A type in CaTT, we have JΓKB ⊢ JAKB type in HoTT.

• For any term Γ ⊢ t : A in CaTT, we have JΓKB ⊢ JtKB : JAKB in HoTT.

• For any substitution ∆ ⊢ γ :: Γ in CaTT, we have J∆KB ⊢ JγKB :: JΓKB in

HoTT.

• For any coherence ⊢ cohΓ,A, we have JΓKB ⊢ JcohΓ,AKB : JAKB in HoTT.

• For any pair of ps-contexts Γ,∆ together with a type Γ ⊢ A type in CaTT

and a substitution J∆KB ⊢ γ :: JΓKB in HoTT, the following judgement is

derivable in HoTT:

J∆KB ⊢ elimB(∆, A,Γ, γ) : JAKB[γ]

13

Proof. One can prove this result by mutual induction on the derivation and
induction on the length of the ps-context for the last case, following the induction
scheme defining the translation. The case of elim is the interesting one, where
the case of a ps-context with a single object comes from Lemma 7, and for
the inductive case, we need to check that the application of the J rule is valid
and has the desired type. This is done by induction, and manipulation of the
judgements with usual lemmas about the structure of the type theory, such as
cut admissibility and the functoriality of the action of substitutions. A complete
proof is given in Appendix C.

We now proceed take the liftings of the translation of types and terms in
order to obtain a translation from CaTT terms to closed terms in HoTT. Given
a type Γ ⊢ A type in CaTT, we denote JΓ ⊢ A typeK the Π-lifting of the type
JΓKB ⊢ JAKB : in HoTT, and given a term Γ ⊢ t : A in CaTT, we denote
JΓ ⊢ t : AK the λ-lifting of the term JΓKB ⊢ JtKB : JAKB in HoTT. This is
independent from the choice of the variable B.

Theorem 9. Given a derivable term Γ ⊢ t : A in CaTT, the closed λ-term

JΓ ⊢ t : AK is valid in HoTT. More precisely, the following judgement is derivable

in HoTT:

∅ ⊢ JΓ ⊢ t : AK : JΓ ⊢ A typeK.

Proof. This is consequence of Lemma 2 and Proposition 8

6 Leveraging automation

We have now finished the presentation of our translation scheme, and we con-
clude with a discussion around the implementation of this translation scheme,
and briefly present mechanisation principles available in CaTT, to finish with an
example where we generate a proof term in HoTT leveraging this mechanisation,
and compare it with a definition of a similar term directly in HoTT.

6.1 Implementation

We have implemented the translation algorithm presented in Section 5, in the
form of a plugin for the Coq proof assistant, named CaTT plugin2. This plugin
extends the syntax of Coq with a new primitive Catt, that can be used with
the following syntax:

Catt [names] From File [path]

where [path] is the path of a CaTT file and [names] is a list of space separated
string corresponding to names of declared coherences and terms in the CaTT file.
Upon execution, this command uses as a backend CaTT to parse and type-check
the provided file, and then uses the translation algorithm to generate the terms
in Coq corresponding to the specified coherences and terms. The choice of Coq

2https://www.github.com/thibautbenjamin/catt

14

https://www.github.com/thibautbenjamin/catt

was motivated by the extensibility of its plugin system, and the ease of tooling,
since both Coq and our implementation of CaTT are written in OCaml. In order
to generate terms, our implementation interfaces directly with the Coq kernel.
Following Coq’s internals, our implemented algorithm uses pattern-matching of
identities against the reflexivity terms instead of application of the J rule.

Our implementation is still experimental, and could be improved in many
ways. First, as the time of writing, we always expand all applied terms down to
coherences. In practice, this means every function application is inline, making
the type checking by Coq computationally heavy.

6.2 Mechanisation principles in CaTT

Despite HoTT terms interpret CaTT terms, there are still three main differences
between the work in CaTT and the work in HoTT. First, CaTT is a theory for
weak ω-categories, and thus is inherently directed, while in HoTT the identity
types satisfy symmetry. Second, CaTT is fully weak, that is terms in CaTT never
reduce to other terms, while in HoTT, it is always the case that the composition
of two reflexivity definitionnally reduces to a reflexivity. Finally, in HoTT, all
the operations that we define on identity types are polymorphic, allowing to lift
them to identity types on identity types themselves, and so on, while in CaTT,
the type ∗ can only ever be substituted for itself. This may indicate that working
in CaTT is harder than working in HoTT. However, this added complexity is
largely offset by the various mechanisation features that implemented in CaTT,
which are only permitted by the simplicity of the language. The suspension
meta-operation in CaTT [7] exactly accounts for the lack of polymorphism. The
automatic computation of inverses and cancellation witnesses [8] accounts for
the lack of symmetry when the cells still happen to be invertible. Other meta-
operations, such as the opposites [7] and the functorialisation [5] account for
a wide range of phenomena that are not accounted for in HoTT. These meta-
operations are leveraged in practical uses of CaTT to construct complex terms
with a minimal proof effort.

6.3 Quantitative experiment: the Eckmann-Hilton cell

As an example to illustrate our point, we present here the Eckmann-Hilton
cell. This is a cell that formalises the Eckmann-Hilton argument, playing an
important role in topology. It can be derived in HoTT by considering a term x

of any type A and two terms a, b of type Id(reflA,x, reflA,x), and is a witness that
inhabit the identity type between the transitivity of a and b, and the transitivity
of b and a. Deriving this cell is done by purely algebraic manipulation of identity
types, and can be done in CaTT. Figure 3 illustrates the intuitive idea allowing
to define this cell, where the one dimensional cells are all identities. This figure
is only for intuition, as it is missing a lot of data, such as the associators and
unitors.

We have a CaTT definition of the Eckmann-Hilton cell using all the mecha-
nisation features mentioned above (see Appendix D), using 786 characters. The

15

x x x x

x x x x x x

p

p

p

p

p

p

p

p

p

p

p

p

p

p

a

b

b

a

a

b a

b

Figure 2: Intuitive illustration of the Eckmann-Hilton cell

definition of the Eckmann-Hilton cell in the HoTT library of Coq3 is in the file
theories/Homotopy/Syllepsis.v. A direct comparison with this file would
not be fair, since it relies on modules that provide a lot more than just the re-
quired lemmas for defining the Eckmann-Hilton cell. Nevertheless, a qualitative
comparison shows that the CaTT definition is far shorter. In order to assess our
translation scheme, we compare a definition of the Eckmann-Hilton cell obtained
by generation from CaTT with the definition that is in the HoTT library. As a
proxy for the complexity of a term, we count the number of characters that Coq
prints when asked to print the term in normal form with Eval cbv in [term].
When running the experiment, we found the complexity of the term generated
by CaTT to be of 79773 characters long, while that of the term from HoTT is
428183 characters long. These experiments were conducted in a slightly mod-
ified version of our implementation4 where the generated names of variables
have been shortened to use the same name as in CaTT, as to not artificially
skew the results, since our actual implementation generates very long variable
names. We also used the Set Printing All option, to avoid hidden confusion
factors, such as conveniently defined notations and implicit arguments. Overall,
we deem these results surprising, since we expect CaTT to generally generate
longer terms, due to the fact that it is inherently directed and fully weak, al-
though not very significant due to the proxy for measuring complexity that
we chose. We believe that this result is mostly due to the definition of the
Eckmann-Hilton cell in CaTT being more parsimonious, and we take this as a
witness that CaTT is a helpful tool when reasoning on higher categories making
such a definition achievable, but mostly we take these results as witnesses that
the complexity of the generated is reasonably similar to that of similar terms
that one would define by hand.

3https://github.com/HoTT/Coq-HoTT
4https://github.com/thibautbenjamin/catt/tree/catt-vs-hott/coq_plugin/catt-vs-hott

16

https://github.com/HoTT/Coq-HoTT
https://github.com/thibautbenjamin/catt/tree/catt-vs-hott/coq_plugin/catt-vs-hott

References

[1] Thorsten Altenkirch and Ondrej Rypacek. A syntactical approach to weak
omega-groupoids. Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[2] Dimitri Ara. Sur les infini-groupöıdes de Grothendieck et une variante
infini-catégorique.

[3] Michael A Batanin. Monoidal globular categories as a natural environment
for the theory of weakn-categories. 136(1):39–103.

[4] Thibaut Benjamin. Formalization of dependent type theory: The example
of CaTT.

[5] Thibaut Benjamin. A type theoretic approach to weak ω-categories and
related higher structures.

[6] Thibaut Benjamin, Eric Finster, and Samuel Mimram. Globular weak ω-
categories as models of a type theory.

[7] Thibaut Benjamin and Ioannis Markakis. Hom ω-categories of a computad
are free.

[8] Thibaut Benjamin and Ioannis Markakis. Invertible cells in ω-categories.

[9] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700
syntactical models of type theory. pages 182–194.

[10] John Bourke. Iterated algebraic injectivity and the faithfulness conjecture.

[11] Guillaume Brunerie. On the homotopy groups of spheres in homotopy type
theory.

[12] John Cartmell. Generalised algebraic theories and contextual categories.
32:209–243.

[13] Eugenia Cheng. An ω-category with all duals is an ω-groupoid. 15:439–453.

[14] Christopher J. Dean, Eric Finster, Ioannis Markakis, David Reutter, and
Jamie Vicary. Computads for weak ω-categories as an inductive type.

[15] Eric Finster and Samuel Mimram. A type-theoretical definition of weak
ω-categories. pages 1–12. IEEE.

[16] Soichiro Fujii, Keisuke Hoshino, and Yuki Maehara. ω-weak equivalences
between weak ω-categories.

[17] Alexander Grothendieck. Pursuing stacks.

[18] Martin Hofmann and Thomas Streicher. The groupoid interpretation of
type theory. 36:83–111.

17

[19] Tom Leinster. Higher Operads, Higher Categories. Number 298. Cambridge
University Press.

[20] Peter LeFanu Lumsdaine. Weak omega-categories from intensional type
theory. Volume 6, Issue 3:1062.

[21] Georges Maltsiniotis. Grothendieck $\infty $-groupoids, and still another
definition of $\infty $-categories.

[22] Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory, volume 9.
Bibliopolis Naples.

[23] Christine Paulin-Mohring. Inductive definitions in the system Coq rules
and properties. pages 328–345. Springer.

[24] The {Univalent Foundations Program}. Homotopy

Type Theory: Univalent Foundations of Mathematics.
\url{https://homotopytypetheory.org/book}.

[25] Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids.
102(2):370–394.

[26] Mark Weber. Generic morphisms, parametric representations and weakly
Cartesian monads. 13(14):191–234.

18

A Structural rules of dependent type theories

We consider dependent type theories that always satisfy some amount of struc-
ture, namely that which makes their syntax into a category with families. We
recall here part of this structure that we use, and which is satisfied by all the
types theories we consider. First, the variables are pre-terms, and we want there
to be an action of substitutions on types and terms. On term type and term
constructors, this action is defined for every type and term constructor, but
is usually the unique sensible choice. On variables, this action associates the
pre-term associated to the variable in the substitution, or leaves the variable
unchanged if there is no association. We can express this inductively as follows

x[〈〉] = undefined x[〈γ, y 7→ t〉] =

{

t if y = x

x[γ] otherwise

There is also a composition of substitutions defined inductively from the action
on terms as follows

〈〉 ◦ γ = 〈〉 〈δ, x 7→ t〉 ◦ γ = 〈δ ◦ γ, x 7→ t[γ]〉.

All the substitutions that we consider here are implicitly well-scoped, and so
in particular, when we write t[γ], (reps. A[γ], δ ◦ γ), we implicitly assume that
all free variables of t, (resp. A,δ) are bound in γ. Given a pre-context Γ, we
denote idΓ the identity substitution on Γ which maps every variable to itself.
It is required that the action of substitutions on pre-types and on pre-terms is
compatible with the substitution, and that the identity is a neutral element for
this action in the sense that the following equations hold:

A[δ ◦ γ] = A[δ][γ] t[δ ◦ γ] = t[δ][γ]

A[idΓ] = A t[idΓ] = t γ ◦ idΓ = γ.
(1)

The derivation rules for contexts, substitutions and terms that are variables are
standard, and given by the following:

∅ ⊢ ctx
(∅-ctx)

Γ ⊢ ctx Γ ⊢ A type

(Γ, x:A) ⊢ ctx
(+-ctx)

Γ

Γ ⊢ 〈〉 :: ∅
(∅-sub)

∆ ⊢ γ :: Γ Γ ⊢ A type ∆ ⊢ t : A[γ]

∆ ⊢ 〈γ, x 7→ t〉 :: (Γ, x:A)
(+-sub)

Γ ⊢ ctx assoc(Γ, x) = A

Γ ⊢ x : A
(var-in)

where assoc(Γ, x) is the partial function that returns the last element to which
x is associated if it exists, in the context Γ seen as an association list. We also
require our type theories to satisfy cut-admissibility for terms and types, that

19

is we require the following rules to be admissible

Γ ⊢ A type ∆ ⊢ γ :: Γ

∆ ⊢ A[γ] type

Γ ⊢ t : A ∆ ⊢ γ :: Γ

∆ ⊢ t[γ] : A[γ]

Γ ⊢ ϑ :: Θ ∆ ⊢ γ :: Γ

∆ ⊢ ϑ ◦ γ : Θ
(2)

It is standard that Martin-Löf type theory, homotopy type theory or any
reasonable fragment of those respect all of the structure described above. The
dependent type theories GSeTT and CaTT also do, as witnessed by a formalisa-
tion in Agda [4]. In the case of the CaTT, the action of a substitution δ on a
pre-term of the form cohΓ,A[γ] is given by the formula

cohΓ,A[γ][δ] = cohΓ,A[γ ◦ δ].

The dependent type theory HoTT is also subject to a non-trivial definitional
equality, for which we assume that we have a confluent rewriting system, and
we assume that this equality respects the typing, in the sense that the following
rules are admissible

Γ ⊢ A type A ≡ B

Γ ⊢ B type

Γ ⊢ u : A A ≡ B

Γ ⊢ u : B

Γ ⊢ u : A u ≡ v

Γ ⊢ v : A
(3)

B Proof of Section 4

This section is dedicated to the proof of Lemma 4, which shows the correctness
of the translation principle from GSeTT to HoTT.

Lemma 4. Translating derivable contexts, types and variables in GSeTT yields

derivable contexts, types and variables in HoTT. More precisely, we have:

• For every derivable context judgement Γ ⊢ ctx in GSeTT, the judgement

JΓKB ⊢ ctx is derivable in HoTT.

• For any type judgement Γ ⊢ A type derivable in GSeTT, the judgement

JΓKB ⊢ JAKB type is derivable in HoTT.

• For any term judgement Γ ⊢ x : A derivable in GSeTT, the judgement

JΓKB ⊢ x : JAKB is derivable in HoTT

Proof. We proceed by mutual induction on the derivation tree of the judgements.

• If the derivation tree ends with Rule (∅-ctx), then it is a derivation of
the judgement ∅ ⊢ ctx. We then have J∅KB = (B:U), and the judgement
(B:U) ⊢ ctx is derivable in HoTT.

• If the derivation tree ends with Rule (+-ctx), then it is a derivation of
the judgement (Γ, x:A), produced from derivations for the two following
judgements in GSeTT:

Γ ⊢ ctx Γ ⊢ A type

20

by induction, these give derivations for the following judgements in HoTT

JΓKB ⊢ ctx JΓKB ⊢ JAKB type

which by application of Rule (+-ctx) give a derivation of the judgement
(JΓKB,x: JAKB) ⊢ ctx in HoTT.

• A derivation ending with Rule (∗-in) is a derivation of Γ ⊢ ∗ type obtained
from a derivation of Γ ⊢ ctx. By induction, this gives a derivation of the
judgement JΓKB ⊢ ctx. Moreover, this contexts starts with the association
(B:U), and since the variable B is not a valid variable name in GSeTT,
this association cannot be overridden in JΓKB. Thus, Rule (var-in) gives
a derivation of the judgement Γ ⊢ B : U in HoTT, which in terms let us
get by Rule (El-in) a derivation of Γ ⊢ El(B) type.

• A derivation ending with Rule (→-in) is a derivation of Γ ⊢ x →A y type

obtained from derivations of the following three judgements in GSeTT:

Γ ⊢ A type Γ ⊢ x : A Γ ⊢ y : A

By induction, each of them gives a derivation for the corresponding judge-
ment in HoTT

JΓKB ⊢ JAKB type JΓKB ⊢ x : JAKB JΓKB ⊢ y : JAKB

Rule (Id-in) then gives a derivation of the judgement JΓKB ⊢ IdJAKB(x,y) type
in HoTT.

• A derivation finishing with an application of Rule (var-in) is a derivation
of the judgement Γ ⊢ x : A obtained from a derivation of Γ ⊢ ctx, such
that assoc(Γ, x) = A. By induction, we get a derivation for the rule
JΓKB ⊢ ctx in HoTT. Moreover, from the definition of JΓKB, one can see
that assoc(JΓKB,x) = JAKB. Hence, we get a definition of the judgement
JΓKB ⊢ x : JAKB.

C Proof of Section 5

This section is dedicated to proving correctness of the translation scheme of
CaTT term to closed λ-terms in HoTT.

Lemma 6. The proposed translation scheme respects substitution application

at the level of the pre-syntax. More precisely, the following results hold:

• For all pre-type A and all pre-substitution γ in CaTT, we have the following

equality of pre-types in HoTT: JA[γ]KB = JAKB [JγKB].

• For all pre-term t and all pre-substitution γ in CaTT, we have the following

equality of pre-terms in HoTT: Jt[γ]KB = JtKB [JγKB].

21

• For all pairs of pre-substitutions δ, γ in CaTT, we have the following equal-

ity of pre-substitutions in HoTT: Jδ ◦ γKB = JδKB ◦ JγKB.

Proof. These results hold syntactically regardless of any well-foundedness prin-
ciple. We fix a pre-substitution γ, and proceed by mutual induction.

• Considering the pre-type ∗, we have J∗[γ]KB = B. On the other hand,
JγKB starts by defining the mapping B 7→ B, and since by assumption,
the variable B is not a variable in CaTT, this mapping is never overridden
in JγKB. Thus we have B[JγKB] = B. This shows the equality

J∗[γ]KB = (J∗KB)[JγKB].

• Considering the pre-type u →A v, by the inductive case for types, we have
the equality JA[γ]KB = (JAKB)[JγKB]. By the mutually inductive case for
terms, we have Ju[γ]KB = (JuKB)[JγKB], and similarly for v. this shows the
equality

J(u →A v)[γ]KB = (Ju →A vKB)[JγKB].

• Considering a variable x in CaTT, denote u = x[γ] the term corresponding
to the last binding of x in γ. By definition, this binding defines the binding
x 7→ JuKB in JγKB. Moreover, the binding x 7→ u being the last binding of
x in γ implies that this binding of x is never overridden in JγKB. Hence,
we have x[JγKB] = JuKB. This proves the equality

Jx[γ]KB = (JxKB)[JγKB]

• Considering the pre-term cohΓ,A[δ], we have by definition

JcohΓ,A[δ][γ]KB = (JcohΓ,AKB)[Jδ ◦ γKB]

JcohΓ,A[δ]KB[JγKB] = (J(cohΓ,A)KB)[JδKB][JγKB]

By the inductive case for substitutions, we have Jδ ◦ γKB = JδKB ◦ JγKB.
Then using the definition of the action of substitution on coherences as
well as (1) shows that

JcohΓ,A[δ][γ]KB = JcohΓ,A[δ]KB[JγKB]

• Considering the empty pre-substitution 〈〉, since B[JγKB] = B, we have
the following equalities

J〈〉 ◦ γKB = J〈〉KB = 〈B 7→ B〉

J〈〉KB ◦ JγKB = 〈B 7→ B[JγKB]〉 = 〈B 7→ B〉.

• Considering the pre-substitution 〈δ, x 7→ u〉, the inductive case shows that
Jδ ◦ γKB = JδKB ◦ JγKB. The mutually inductive case for terms shows that
Ju[γ]KB = (JuKB)[JγKB]. Together, they prove the equality

J〈δ, x 7→ u〉 ◦ γKB = J〈δ, x 7→ u〉KB ◦ JγKB.

22

Before proving Lemma 7, we first show the following result as an intermediate
step

Lemma 10. Given two ps-contexts Γ and ∆, a type Γ ⊢ A type and a substitu-

tion ∆ ⊢ γ :: Γ in CaTT, the free variables of the term elimB(∆, A,Γ, γ) are all

bound in the context J∆KB.

Proof. We can verify this by induction on the ps-context ∆.

• For the context (x: ∗), the free variables of the term

elimB((x: ∗), A,Γ, γ) = reflB,x

areB and x and both are bound in the context J(x: ∗)KB = (B:U ,x:El(B)).

• For the context (∆, y:C, f: x →C y), recall that we have

elimB((∆, y:C, f : x →C y), A,Γ, γ) = J(JCKB,x, P (x′,y′, f ′), p) y f

where

P (x′,y′, f ′) := JAKB[γ][〈idJ(∆,y:C,f:x→Cy)KB ,x 7→ x′,y 7→ y′, f 7→ f ′〉]

p := elimB(∆, A,Γ, γ ◦ 〈idJ∆KB ,y 7→ x, f 7→ reflJCKB,x〉).

Hence, the free variables of the term elimB((∆, y:C, f: x →C y), A,Γ, γ)
are the union of the free variables of the term p and the set {x,y, f}. By
induction, all free variables of p are bound in J∆KB, thus, all the above
variables are bound in J(∆, y:C, f:x →JCKB y)KB

Lemma 7. For every term (x: ∗) ⊢ u : A in CaTT, we have JuKB ≡ refldimA+1
B,x .

Similarly, for every type (x: ∗) ⊢ A type in CaTT, we have JAKB ≡ IddimA+1
B,x

Proof. We first prove the result for terms, that we prove mutually inductively
with the following proposition: for every ps-contexts Γ,∆, type Γ ⊢ A type and
substitution J∆KB ⊢ γ :: JΓKB, as well as a substitution (x: ∗) ⊢ δ :: ∆, we have

(elimB(∆, A,Γ, γ))[JδKB] ≡ refldimA+1
B,x .

We proceed by structural induction on the term, and induction on the length of
the ps-context.

• For the term x which is the unique variable of the context, by definition,
we have JxKB = x = refl0B,x.

• For a coherence term of the form cohΓ,C [γ] with C[γ] = A. Then

JcohΓ,C [γ]KB = (elimB(Γ, C,Γ, idΓ))[JγKB],

so by the mutually inductive proposition, and using that dimA = dimC,
we get

JcohΓ,C [γ]KB = refldimC+1
B,x

= refldimA+1
B,x .

23

• Given a ps-context Γ with a substitution J(y: ∗)KB ⊢ γ :: JΓKB and a
substitution (x: ∗) ⊢ δ :: (y: ∗), the only term of type ∗ derivable in the
context (x: ∗) is x thus we have δ = 〈y 7→ x〉. Then, we have

elim((y: ∗), A,Γ, γ)[JδKB] = refldimA+1
B,y [B 7→ B,y 7→ x]

= refldimA+1
B,x .

• Given a ps-context Γ and a ps-context of the form ∆′ = (∆, z:D, f: y →D

z), with a substitution J∆′KB ⊢ γ :: JΓKB and a substitution (x: ∗) ⊢ δ′ ::
∆′, the substitution δ′ decomposes as δ′ = 〈δ, z 7→ v, f 7→ w〉. We have

elim(∆′, A,Γ, γ)Jδ′KB ≡ J(JCKB,y, P (y′, z′, f ′), p)[Jδ′KB] (JvKB) (JwKB)

where

P (y′, z′, f ′) := JCKB[γ][〈idJ∆′KB ,y 7→ y′, z 7→ z′, f 7→ f ′〉]

p := elimB(∆, A,Γ, γ ◦ 〈idJ∆KB , z 7→ y, f 7→ reflJCKB,y〉).

By the structural induction case for terms, we have

JvKB ≡ refldimD+1
B,x JwKB ≡ refldimD+2

B,x ,

and since dimD+2 ≥ 1, refldimD+2
B,x is a reflexivity term the computation

rule (ηJ) shows

elim(∆′, A,Γ, γ)Jδ′KB ≡ p[Jδ′KB].

By Lemma 10, we have p[Jδ′KB] ≡ p[JδKB]. By (2) we have

J∆KB ⊢ γ ◦ 〈idJ∆KB ,y 7→ x, f 7→ reflJCKB,x〉 :: JΓKB,

and by inversion, we have (x: ∗) ⊢ δ :: ∆, thus by induction, this shows
that p[JδKB] ≡ refldimA+1

B,x .

The result of type is a consequence of the one on terms. Indeed, we proceed
by structural induction on the type. For the type ∗, since we have J∗KB =
B = Id0B,x, and considering the type (x: ∗) ⊢ u →A v type in CaTT, we have
derivations of the judgements (:∗) ⊢ u : A and (x: ∗) ⊢ v : A, and so by induction
and by the result on terms, we get the following equalities

JAKB ≡ IddimA+1
B,x JuKB ≡ refldimA+1

B,x JvKB ≡ refldimA+1
B,x

This shows that we have

Ju →A vKB ≡ Id
Id

dimA+1

B,x
(refldimA+1

B,x , refldimA+1
B ,x) = IddimA+2

B,x .

Proposition 8. The following results hold:

• For any context Γ ⊢ ctx in CaTT, we have JΓKB ⊢ ctx in HoTT.

24

• For any type Γ ⊢ A type in CaTT, we have JΓKB ⊢ JAKB type in HoTT.

• For any term Γ ⊢ t : A in CaTT, we have JΓKB ⊢ JtKB : JAKB in HoTT.

• For any substitution ∆ ⊢ γ :: Γ in CaTT, we have J∆KB ⊢ JγKB :: JΓKB in

HoTT.

• For any coherence ⊢ cohΓ,A, we have JΓKB ⊢ JcohΓ,AKB : JAKB in HoTT.

• For any pair of ps-contexts Γ,∆ together with a type Γ ⊢ A type in CaTT

and a substitution J∆KB ⊢ γ :: JΓKB in HoTT, the following judgement is

derivable in HoTT:

J∆KB ⊢ elimB(∆, A,Γ, γ) : JAKB[γ]

Proof. We prove this result by mutual induction, the induction scheme following
that of the definition of the translation function J KB and of elimB. The cases
of contexts, types and variables are similar to those of the proof of Lemma 4.

• For the empty context ∅ ⊢ ctx in CaTT, obtained by Rule (∅-ctx), we
have J∅KB = (B:U), and the rules of HoTT allow to build a derivation of
(B:U) ⊢ ctx.

• For the context (Γ, x:A) ⊢ ctx in CaTT obtained by application of Rule
(+-ctx) from derivations of Γ ⊢ ctx and Γ ⊢ A type, by induction we
have derivations for the two following judgements in HoTT

JΓKB ⊢ ctx JΓKB ⊢ JAKB type

• For the type Γ ⊢ ∗ type in CaTT obtained by Rule (∗-in) from a derivation
of Γ ⊢ ctx, by induction we have a derivation of JΓKB ⊢ ctx in HoTT.
Moreover, the first assignation in this context is (B:U) and since the name
B is not a valid variable in CaTT, it cannot be overridden in JΓKB, thus
showing that assoc(JΓKB) = U . This gives by applying Rule (var-in) and
then Rule (El-in), a derivation of

Γ ⊢ El(B) type.

• For the type Γ ⊢ u →A v type in CaTT, obtained by Rule (→-in) from
derivations for the following three judgements

Γ ⊢ A type Γ ⊢ u : A Γ ⊢ v : A

we obtain by the induction cases for types and terms, a derivation for the
three corresponding judgements in HoTT

JΓKB ⊢ JAKB type JΓKB ⊢ JuKB : JAKB JΓKB ⊢ JvKB : JAKB

Then we obtain by Rule (Id-in), a derivation of JΓKB ⊢ IdJAKB(JuKB, JvKB) type.

25

• For a term of CaTT given as a variable Γ ⊢ x : A obtained by Rule
(var-in) from a derivation of Γ ⊢ ctx such that assoc(Γ, x) = A, we
obtain by induction a derivation of JΓKB ⊢ ctx. Moreover, by definition
of JΓKB, we have assoc(JΓKB,x) = JAKB, which lets us derive by Rule
(var-in) a derivation of the following judgement in HoTT

Γ ⊢ x : JAKB.

• For a term of the form ∆ ⊢ cohΓ,A[γ] : A[γ] in CaTT obtained by applica-
tion of Rule (coh-in) from derivations of ⊢ cohΓ,A and ∆ ⊢ γ :: Γ, we get
by the induction cases for coherences and substitutions derivations for the
corresponding judgements in HoTT:

JΓKB ⊢ JcohΓ,AKB : JAKB J∆KB ⊢ JγKB :: JΓKB

and we then obtain, by (2), Lemma 6 and (3) a derivation of the judgement

J∆KB ⊢ JcohΓ,A[γ]KB : JA[γ]KB.

• For the empty substitution Γ ⊢ 〈〉 :: ∅ in CaTT obtained by Rule (∅-sub)
from a derivation of Γ ⊢ ctx, we have by induction a derivation of
JΓKB ⊢ ctx. Moreover, as proven in the case for the type Γ ⊢ ∗ type,
we can construct a derivation of JΓKB ⊢ B : U , which lets us use Rule
(∅-sub) and Rule (+-sub)to produce a derivation of

JΓKB ⊢ 〈B 7→ B〉 :: (B:U)

• For a substitution of the form ∆ ⊢ 〈γ, x 7→ t〉 :: (Γ, x:A) in CaTT obtained
by Rule (+-sub) from derivations of the following judgements

∆ ⊢ γ :: Γ Γ ⊢ A type ∆ ⊢ t : A[γ]

we get by the induction cases for substitutions, contexts and terms, a
derivation of the corresponding judgements in HoTT

J∆KB ⊢ JγKB :: JΓKB JΓKB ⊢ JAKB type J∆KB ⊢ JtKB : JA[γ]KB

Applying Lemma 6 then allows us to apply Rule (+-sub) to obtain a
derivation of the judgement

J∆KB ⊢ 〈JγKB,x 7→ JtKB〉 :: (JΓKB,x: JAKB)

• For a coherence ⊢ cohΓ,A in CaTT obtained by Rule (coh-wd), we have
derivations of Γ ⊢ps and Γ ⊢ A type, thus, we get by the inductive case for
elimB as well as (1) and the fact that JidΓKB = idJΓKB a derivation of

JΓKB ⊢ JcohΓ,AKB : JAKB

26

• Given a ps-context Γ, a type Γ ⊢ A type and a substitution Γ ⊢ γ :: (x: ∗) in
CaTT, by an argument similar to that of the case of context, by Lemma 4
applied to the term (x: ∗) ⊢ x : ∗, we have a derivation of J(x: ∗)KB ⊢ x :
El(B). By Lemma 1, we get a derivation of the judgement

J(x: ∗)KB ⊢ refldimA+1
B,x : IddimA+1

B,x .

Then, applying (2) provides a derivation of (x: ∗) ⊢ A[γ] type, and thus
Lemma 7 then shows JA[γ]Kγ ≡ IddimA+1

B,x , which by (3) gives a derivation
of the judgement

J(x: ∗)KB ⊢ refldimA+1
B,x : JA[γ]KB.

which is syntactically equal to

J(x: ∗)KB ⊢ elimB((x: ∗), A,Γ, γ) : JA[γ]KB.

• Given a ps-context Γ, a type Γ ⊢ A type a ps-context and a substitution
respectively of the following forms

∆′ = (∆, z:C, f: y →C z)

δ′ = 〈δ, z 7→ v, f 7→ w〉

satisfying Γ ⊢ δ′ :: ∆′, recall that we have

elimB((∆, y:C, f : x →C y), A,Γ, γ) := J(JCKB,y, P (y′, z′, f ′), p) z f

where P and p are respectively defined as follows

P (y′, z′, f ′) := JAKB[γ][〈idJ∆′KB ,y 7→ y′, z 7→ z′, f 7→ f ′〉]

p := elimB(∆, A,Γ, γ ◦ 〈idJ∆KB , z 7→ y, f 7→ reflJCKB,y〉).

We first show that this application of the J rule is well-formed in the
context J∆′KB, that is that it follows the premises of Rule (J-in) and of
the function application rule. We first note that by Lemma 3 we have
derivation for the following judgements

∆′ ⊢ C type ∆′ ⊢ y : C

∆′ ⊢ z : C ∆′ ⊢ f : y →C z

By Lemma 4, those provide derivations for each of the corresponding judge-
ments

J∆′KB ⊢ JCKB type J∆′KB ⊢ y : JCKB

J∆′KB ⊢ z : JCKB J∆′KB ⊢ f : IdJCKB(y, z)

So it suffices to show that P and p satisfy the premises of Rule (J-in).
First, define the following context and substitution in HoTT:

Θ := (J∆′KB,y
′: JCKB, z

′: JCKB, Jf
′K: IdJCKB(y

′, z′))

ϑ := 〈idJ∆′KB ,y 7→ y′, z 7→ z′, f 7→ f ′〉.

27

The judgement Θ ⊢ ϑ :: J∆′KB is derivable in HoTT, and by the inductive
for types,so is the judgement JΓKB ⊢ JAKB type, so applying (2) twice
gives a derivation of the judgement

Θ ⊢ P (y′, z′, f ′) type.

Finally, we note that by (2), we have a derivation of

J∆KB ⊢ γ ◦ 〈idJ∆KB , z 7→ y, f 7→ reflJCKB,y〉 :: JΓKB.

Thus, by the inductive case for elimB, decreasing on the first argument ∆,
we get a derivation of

∆ ⊢ p : JAKB[γ ◦ 〈idJ∆KB , z 7→ y, f 7→ reflJCKB,y〉]

By functoriality of the action of substitution, we have the equality

JAKB[γ ◦ 〈idJ∆KB , z 7→ y, f 7→ reflJCKB,y〉] = P (y,y, reflJCKB,y).

This shows that the application of J is valid, and provides with Rule (J-in)
a derivation of the judgement

J∆′KB ⊢ elim(∆′, A,Γ, JγKB) : P (y, z, f)

Since we have P (y, z, f) = JAKB[γ], this in facts gives a derivation of

J∆′KB ⊢ elim(∆′, A,Γ, JγKB) : JAKB[γ]

D The Eckmann-Hilton cell in CaTT

28

coh unitl (x(f)y) : comp (id _) f -> f

coh unit (x) : comp (id x) (id x) -> id x

coh lsimp (x) : (unitl (id x)) -> unit x

coh Ilsimp (x) : I (unitl (id x)) -> I (unit x)

coh exch (x(f(a)g)y(h(b)k)z) :

comp (comp _ [b]) (id (comp f k)) (comp [a] _) -> comp [a] [b]

coh eh1 (x(f(a)g(b)h)y) :

comp a b -> comp (I (unitl f))

(comp (comp _ [a])

(comp (unitl g) (I (op { 1 } (unitl g))))

(comp [b] _))

(op { 1 } (unitl h))

let eh2 (x : *) (a : id x -> id x) (b : id x -> id x) =

comp [Ilsimp _]

[comp (comp _

[comp

(comp [lsimp _] [op { 1 } (Ilsimp _)])

(U (unit _))]

_)

(exch b a)]

[op { 1 } (lsimp _)]

let eh (x : *) (a : id x -> id x) (b : id x -> id x) =

comp (eh1 a b)

(eh2 a b)

(I (op { 1 } (eh2 b a)))

(I (op { 1 } (eh1 b a)))

Figure 3: Definition of the Eckmann-Hilton cell in CaTT

29

	Introduction
	Overview of Martin-Löf type theory
	Notations for type theories
	Martin-Löf type theory

	The dependent type theory CaTT
	The type theory GSeTT
	The type theory CaTT
	Implementation and intuition on the semantics

	Translation of GSeTT terms into HoTT
	Translation of CaTT terms into HoTT
	Leveraging automation
	Implementation
	Mechanisation principles in CaTT
	Quantitative experiment: the Eckmann-Hilton cell

	Structural rules of dependent type theories
	Proof of Section 4
	Proof of Section 5
	The Eckmann-Hilton cell in CaTT

